
First Order Haskell

Neil Mitchell

York University

www.cs.york.ac.uk/~ndmλ



First order vs Higher order

Higher order: functions are values

–Can be passed around

–Stored in data structure

Harder for reasoning and analysis

–More syntactic forms

–Extra work for the analysis

Can we convert automatically?

–Yes (that’s this talk!)



Which are higher order?

[not x | x ← xs]
let xs = x:xs in xs

putChar ‘a’

1

\x → not x

not . odd

not $ odd x

map not xs

foldl (+) 0 xs

a < b
(+1)

const ‘N’



Higher order features

Type classes are implemented as dictionaries

–(==) :: Eq a a →a →Bool

–(==) :: (a→a→Bool, a→a→Bool) →a →a →Bool

Monads are higher order

–(>>=) :: Monad m m a →(a →m b) →m b

IO is higher order

–newtype IO a = IO (World →(World, a))



A map example

map f [] = []

map f (x:xs) = f x : map f xs

heads xs = map head xs

head is passed higher order

map takes a higher order argument

heads could be first order



Reynold’sStyle Defunctionalisation

data Func = Head

apply Head x = head x

map f [] = []

map f (x:xs) = apply f x : map f xs

heads xs = map Head xs

Move functions to data

John C. Reynolds, Definitional Interpreters for 

Higher-Order Programming Languages



Reynold’sStyle Defunctionalisation

Good

–Complete, works on all programs

–Easy to implement

Bad

–No longer Hindley-Milner type correct

–Makes the code more complex

–Adds a level of indirection

–Makes program analysis harder



Specialisation

map_head [] = []

map_head (x:xs) = head x : map_head xs

heads xs = map_head xs

Move functions to code



Specialisation

Find: map head xs

–A call to a function (i.e. map)

–With an argument which is higher order (i.e. head)

Generate: map_head xs = …

–A new version of the function

–With the higher order element frozen in

Replace: map_head xs

–Use the specialised version



Specialisation fails

(.) f g x = f (g x)

even = (.) not odd

check x = even x

Nothing available to specialise!

Can be solved by a simple inline

check x = (.) not odd x



An algorithm

1. Specialise as long as possible

2. Inline once

3. Goto 1

 Stop when no higher order functions remain



Algorithm fails

data Wrap a = Wrap (Wrap a) | Value a

f x = f (Wrap x)

check = f (Value head)

In practice, this is rare –requires a function to 

be stored in a recursive data structure and …

Detect, and revert to Reynold’s method



Code Size

Specialisation approach reduces code volume

–Average about 55% smaller code (20%-95% range)

Mark Jones, Dictionary-free Overloading by 

Partial Evaluation

0

500

1000

1500

2000

2500

3000

Nofib Programs (Imaginary)

L
in

e
s
 o

f 
C

o
d

e

Higher order

First order



Current uses

Performance optimiser

–The first step, makes the remaining analysis simpler

–Already increases the performance

Analysis tool

–Catch, checking for pattern match safety

–Keeps the analysis simpler

Implemented for Yhc (York Haskell Compiler)



Conclusion

Higher order functions are good for 

programmers

Analysis and transformation are simpler in a 

first order language

Higher order functions can be removed

Their removal can reduce code size


