
First Order Haskell

Neil Mitchell

York University

www.cs.york.ac.uk/~ndmλ



First order vs Higher order

Higher order: functions are values

–Can be passed around

–Stored in data structure

Harder for reasoning and analysis

–More syntactic forms

–Extra work for the analysis

Can we convert automatically?

–Yes (that’s this talk!)



Which are higher order?

[not x | x ← xs]
let xs = x:xs in xs

putChar ‘a’

1

\x → not x

not . odd

not $ odd x

map not xs

foldl (+) 0 xs

a < b
(+1)

const ‘N’



Higher order features

Type classes are implemented as dictionaries

–(==) :: Eq a a →a →Bool

–(==) :: (a→a→Bool, a→a→Bool) →a →a →Bool

Monads are higher order

–(>>=) :: Monad m m a →(a →m b) →m b

IO is higher order

–newtype IO a = IO (World →(World, a))



A map example

map f [] = []

map f (x:xs) = f x : map f xs

heads xs = map head xs

head is passed higher order

map takes a higher order argument

heads could be first order



Reynold’sStyle Defunctionalisation

data Func = Head

apply Head x = head x

map f [] = []

map f (x:xs) = apply f x : map f xs

heads xs = map Head xs

Move functions to data

John C. Reynolds, Definitional Interpreters for 

Higher-Order Programming Languages



Reynold’sStyle Defunctionalisation

Good

–Complete, works on all programs

–Easy to implement

Bad

–No longer Hindley-Milner type correct

–Makes the code more complex

–Adds a level of indirection

–Makes program analysis harder



Specialisation

map_head [] = []

map_head (x:xs) = head x : map_head xs

heads xs = map_head xs

Move functions to code



Specialisation

Find: map head xs

–A call to a function (i.e. map)

–With an argument which is higher order (i.e. head)

Generate: map_head xs = …

–A new version of the function

–With the higher order element frozen in

Replace: map_head xs

–Use the specialised version



Specialisation fails

(.) f g x = f (g x)

even = (.) not odd

check x = even x

Nothing available to specialise!

Can be solved by a simple inline

check x = (.) not odd x



An algorithm

1. Specialise as long as possible

2. Inline once

3. Goto 1

 Stop when no higher order functions remain



Algorithm fails

data Wrap a = Wrap (Wrap a) | Value a

f x = f (Wrap x)

check = f (Value head)

In practice, this is rare –requires a function to 

be stored in a recursive data structure and …

Detect, and revert to Reynold’s method



Code Size

Specialisation approach reduces code volume

–Average about 55% smaller code (20%-95% range)

Mark Jones, Dictionary-free Overloading by 

Partial Evaluation

0

500

1000

1500

2000

2500

3000

Nofib Programs (Imaginary)

L
in

e
s
 o

f 
C

o
d

e

Higher order

First order



Current uses

Performance optimiser

–The first step, makes the remaining analysis simpler

–Already increases the performance

Analysis tool

–Catch, checking for pattern match safety

–Keeps the analysis simpler

Implemented for Yhc (York Haskell Compiler)



Conclusion

Higher order functions are good for 

programmers

Analysis and transformation are simpler in a 

first order language

Higher order functions can be removed

Their removal can reduce code size


