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“Generic” Functions

Operates on many data types
Think of equality

Comparing two integers, booleans, lists, trees
Usually, must give each version separately

True in Ada, Java, Haskell...
But usually they follow a pattern!



A Haskell data type

data List = Cons Int List

| Nil

Cons 1 (Cons 2 (Cons 3 Nil))

1 2 3



Generic Equality on Lists

instance Eq List where

Cons a b ≡ Cons x y = a ≡ x ∧ b ≡ y

Nil      ≡ Nil      = True

_        ≡ _        = False

1. They have the same constructor
2. All fields are equal



Generic Equality on Trees

data Tree = B Tree Int Tree | L

instance Eq Tree where

B a b c ≡ B x y z = a≡x ∧ b≡y ∧ c≡z
L       ≡ L       = True

_       ≡ _       = False



Generic Equality on anything?

Always follows the same simple pattern
But highly dependent on the data type

If data type changes, updates required
Could “miss” a field doing it by hand

Solution: Have it automatically generated
The DrIFT and Derive tools allows this



The Problem

Need to state to the computer the 
relationship between data and code

Must be 100% precise
I explained mainly through examples
Requires learning an API, working at a 
meta-level, testing etc.



Specifying the Relationship

DataType → String

eq' dat = simple_instance "Eq" dat [funN "==" body]

where

body = map rule (dataCtors dat) ++

[defclause 2 false]

rule ctor = sclause [ctp ctor 'a', ctp ctor 'b']

(and_ (zipWith (==:) (ctv ctor 'a') (ctv ctor 'b')))

YUK!



Generic Functions by Example

What if we provide only an example
The computer can infer the rules

Uses concepts the user understands
Guaranteed to work on at least 1 example
Guaranteed to be type correct
Quicker to write



Giving an example

Needs to be on an interesting data type
Complex enough to have variety

data DataName = First

| Second Any

| Third  Any Any

| Fourth Any Any



And the example…
instance Eq DataName where

First ≡ First = True

Second x1 ≡ Second y1 = x1 ≡ y1 ∧ True

Third x1 x2 ≡ Third y1 y2 = x1 ≡ y1 ∧ x2 ≡ y2 ∧ True

Fourth x1 x2 ≡ Fourth y1 y2 = x1 ≡ y1 ∧ x2 ≡ y2 ∧ True

_ ≡ _ = False

Now y1 and y2
instead of x and y

Redundant True
at the end



Notation for Substitution

York ⇒ Hello [#] Hello York

YDS ⇒ [date] 2007/10/26

Parameter Substitute

Tom ⇒ Hello [#] Hello Tom



Assign Parameters

3rd constructor 
⇒ [name] 1 ⇒ y[#] 2 ⇒ y[#]

Third  y1 y2

Idea: Move from the specific example,
to a generalised version



Group lists (MAP)

3rd constructor 
⇒ [name]

1 ⇒ y[#] 2 ⇒ y[#]

Third  y1 y2

2 ⇒ MAP 1..#  y[#]

Only if:
1. Consecutive parameters
2. Same generator



The meaning of MAP

• 2 ⇒ MAP 1..#  y[#]
• MAP 1..2  y[#]
• (1 ⇒ y[#])  (2 ⇒ y[#])
• y1 y2



Generalise Numbers

3rd constructor 
⇒ [name]

Third  y1 y2

2 ⇒ MAP 1..#  y[#]

3rd constructor
⇒ MAP 1..arity  y[#]



Combine elements

3rd constructor
⇒ [name]

Third  y1 y2

3rd constructor
⇒ MAP 1..arity  y[#]

3rd constructor
⇒ [name]  (MAP 1..arity  y[#])



Applying to other constructors

First      First

Second     Second y1
Third      Third y1 y2
Fourth     Fourth y1 y2

3rd constructor
⇒ [name]  (MAP 1..arity  y[#])



The Complete Generalisation

instance Eq [dataname] where

[MAP ctors (

([name] [MAP 1..arity (x[#])) ≡
([name] [MAP 1..arity (y[#])) =

[FOLDR (∧) True
[MAP 1..arity (x[#] ≡ y[#])]

]

)]

_ ≡ _ = False



Limitations: Non-inductive

Example: Binary serialisation

Write out a tag (which constructor) then 
the fields

If only one constructor, no need for a tag
There is no general pattern



Limitations: Type Based

Example: Monoid

The instance for a Monoid is based on the 
types of the fields

Equal types have one value, different another
The DataName type does not have 
different types



Limitations: Records

Example: Show

data Pair = Pair {fst::Int, snd::Int} 

show (Pair 1 2) = “Pair {fst=1, snd=2}”

Show includes the record field names
DataName does not have record fields



Success Rate

Success
Failure

15
9

•Eq
•Ord
•Data
•Serial
•Arbitrary
•Enum
•…



Future Work

Extend the data type with more variety
Allows more classes to be specified
But more work to specify each class

New uses for the information
Can derive classes at runtime

Implement in other languages (Java?)



Conclusion

Writing generic functions is cumbersome
Writing generic relationships is hard
Writing a single example is much easier

Works well in practice
Enables new contributors



Example 2

x1 ≡ y1 ∧ x2 ≡ y2 ∧ True

⇒ True

1 ⇒ x[#] 1 ⇒ y[#]

1 ⇒ x[#] ≡ y[#]
2 ⇒ x[#] ≡ y[#]



Generalising to a FOLDR

x1 ≡ y1 ∧ x2 ≡ y2 ∧ True

⇒ True
1 ⇒ x[#] ≡ y[#] 2 ⇒ x[#] ≡ y[#]

FOLDR (∧) True
(1 ⇒ x[#] ≡ y[#], 2 ⇒ x[#] ≡ y[#])



Generalising to a MAP

x1 ≡ y1 ∧ x2 ≡ y2 ∧ True

FOLDR (∧) True
(1 ⇒ x[#] ≡ y[#], 2 ⇒ x[#] ≡ y[#])

2 ⇒ FOLDR (∧) True
(MAP 1..# (x[#] ≡ y[#]))
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