
Deriving a Relationship
from a Single Example

Neil Mitchell

community.haskell.org/~ndm/derive

Haskell data type

• Haskell let’s us define data types:

data Language
= Haskell [Extension] Compiler
| Javascript
| Cpp Version

Eq instance

• We can define equality on data types:

instance Eq Language where

Haskell x1 x2 ≡ Haskell y1 y2 = x1 ≡ y1 && x2 ≡ y2

Javascript ≡ Javascript = True
Cpp x1 ≡ Cpp y1 = x1 ≡ y1

_ ≡ _ = False

What is the relationship?

• Given a new data type, could you define
equality on it?

• Could you precisely specify the
relationship?
– If so, in what formalism?

The relationship
List [Instance ["Eq"] "Eq" (List [App "InsDecl" (List [App "FunBind" (List [Concat (List [MapCtor (App
"Match" (List [App "Symbol" (List [String "=="]),List [App "PApp" (List [App "UnQual" (List [App "Ident"
(List [CtorName])]),MapField (App "PVar" (List [App "Ident" (List [Concat (List [String "x",ShowInt
FieldIndex])])]))]),App "PApp" (List [App "UnQual" (List [App "Ident" (List [CtorName])]),MapField (App
"PVar" (List [App "Ident" (List [Concat (List [String "y",ShowInt FieldIndex])])]))])],App "Nothing" (List
[]),App "UnGuardedRhs" (List [Fold (App "InfixApp" (List [Head,App "QVarOp" (List [App "UnQual"
(List [App "Symbol" (List [String "&&"])])]),Tail])) (Concat (List [MapField (App "InfixApp" (List [App
"Var" (List [App "UnQual" (List [App "Ident" (List [Concat (List [String "x",ShowInt FieldIndex])])])]),App
"QVarOp" (List [App "UnQual" (List [App "Symbol" (List [String "=="])])]),App "Var" (List [App "UnQual"
(List [App "Ident" (List [Concat (List [String "y",ShowInt FieldIndex])])])])])),List [App "Con" (List [App
"UnQual" (List [App "Ident" (List [String "True"])])])]]))]),App "BDecls" (List [List []])])),List [App "Match"
(List [App "Symbol" (List [String "=="]),List [App "PWildCard" (List []),App "PWildCard" (List [])],App
"Nothing" (List []),App "GuardedRhss" (List [List [App "GuardedRhs" (List [List [App "Qualifier" (List
[App "InfixApp" (List [App "App" (List [App "Var" (List [App "UnQual" (List [App "Ident" (List [String
"length"])])]),App "List" (List [MapCtor (App "RecConstr" (List [App "UnQual" (List [App "Ident" (List
[CtorName])]),List []]))])]),App "QVarOp" (List [App "UnQual" (List [App "Symbol" (List [String
">"])])]),App "Lit" (List [App "Int" (List [Int 1])])])])],App "Con" (List [App "UnQual" (List [App "Ident" (List
[String "False"])])])])]]),App "BDecls" (List [List []])])]])])])])]

Can anyone spot the deliberate typo?

Relationship details

• To implement the relationship:
– Input language/data type

– Transformation language
– Output language/data type

• Transformation could be Haskell?
• Others require a lot of learning

An easier way

• Write one example instance for a
particular data type

• Derive the relationship automatically

• No human need read or write that horrible
slide

The particular data type

data Sample a = First | Second a a | Third a

instance Eq a ⇒ Eq (Sample a) where
First ≡ First = True
Second x1 x2 ≡ Second y1 y2 = x1 ≡ y1 && x1 ≡ y2 && True
Third x1 ≡ Third y1 = x1 ≡ y1 && True
_ ≡ _ = False

+ the Derive tool
= the relationship

The Derive tool

• Automatically generate instances for data
types
– Works via Template Haskell

– Or via SYB
– Or via Haskell-src-exts

• More instances = better
– But more work for me…

Our Scheme

Our scheme

• Given 1 output for a particular input, derive
the relationship

Input
Data type

Output
Instance decl

Relationship

Restricted relationship (DSL)

• The relationship is a function
• But there are infinite functions, we can’t

write functions down easily…
• Instead have a DSL for the relationship

– Tailored to each problem
– Exactly the right expressive power

Our scheme (2)

data Input, Output, DSL

apply :: DSL → Input → Output

sample :: Input

derive :: Output → [DSL]

+ correctness
+ predictability

Correctness

• Derive must generate something
consistent

∀o ∈ Output, d ∈ derive o, apply d sample ≡ o

Predictability

• The derive function is predictable if it does
what the user expects

• Two DSL values are congruent if for all
inputs they produce the same output

• All outputs from derive must be congruent

• But now the user needs to
know/understand derive – not good!

Predictability (2)

• Stronger: Any possible result satisfying the
correctness property is congruent

∀d1,d2, apply d1 sample ≡ apply d2 sample
⇒ d1 ≅ d2

• Predictability is not related to the derive
function.

Instantiation of our scheme

• Input is data type descriptions
– Using the haskell-src-exts data type

• Output is Haskell source code
– Again using haskell-src-exts

• DSL is the relationship
– Small functional language, with fold/map etc.

– Plus functions over constructors/fields
– And predictability proof

Bibtex Citations

Bibtex citations

• There are many Bibtex citation styles
– All vary by where author name/year etc go

– Implemented in Latex style files (ish)
• I assume it’s ugly – but don’t actually know!

• Let’s define a little DSL and prove it has
the right properties
– Illustrative of the paper

A citation type (Input)

data Input = Citation
{year :: Int
,authors :: [(String,String)]}

Citation
{year = 2009 -- Haskell considered evil
,authors = [(“Bjarne”,“Stroustrup”)

,(“James”,“Gosling”)]}

A little language (DSL)

data DSL1 = Str String
| Year
| Head DSL
| AuthorFst
| AuthorSnd
| Authors String DSL

type DSL = [DSL1]

Bibtex apply

apply ds i = concatMap (`apply1` i) ds

apply1 :: DSL1 → Input → Output
apply1 (Str x) i = x
apply1 (Year x) i = show $ year i
apply1 (Head x) i = take 1 $ apply x i
apply1 (AuthorFst x) i = fst $ head $ authors i
apply1 (AuthorSnd x) i = snd $ head $ authors i
apply1 (Authors s x) i = intercalate s

[apply x i{authors=[a]} | a ← authors i]

Some examples

• Stroustrup and Gosling 2009
– [Authors “ and ” [AuthorSnd], Str “ ”, Year]

• B Stroustrup, J Gosling
– [Authors “, ” [Head [AuthorFst], Str “ ”,

AuthorSnd]]

• SG2009
– [Authors “” [Head [AuthorSnd]], Year]

Challenge 1

• Stroustrup et al 2009

• Should omit “et al” if only 1 author
• Can this be defined in the DSL?

Solution

• Stroustrup et al 2008

[AuthorSnd]++ map f “ et al” ++[Str “ ”, Year]
where

f c = Head [Authors [c] []]

Challenge 2

• Give 2 congruent DSL’s

Solutions

[Str “hello”] = [Str “he”, Str “llo”]
[Head [Str “”]] = [Str “”]
[Head [Head x]] = [Head x]
[Authors “” []] = [Str “”]
[Authors x [Authors y z]] = [Authors x z]

• Lot’s of congruent DSL’s

Challenge 3

• Come up with a sample input

• Needs to ensure the predictability property

∀d1,d2, apply d1 sample ≡ apply d2 sample
⇒ d1 ≅ d2

No solution!

• There is no possible sample which could
work

derive “2009” =
[[Str “2009”]
,[Year]]

• Can’t tell what comes from where

Solution

• Give restrictions on the DSL
– Aim to restrict to have only 1 meaning to each

sample
– Aim to give a natural/simple meaning

• Many possible design solutions
– First thought: restricting Str?

– Anyone any ideas?

Possible restrictions

• Restrict DSL
– Head can only be applied to AuthorFst or

AuthorSnd
– Str cannot contain upper case or numbers

sample = Citation {Year = 2009
, authors = [(“AMY”, “BALE”)

,(“CRAIG”, “DODDS”)]}

Previous examples simple

• BALE and DODDS 2009
• A BALE, C DODDS
• BD2009

• Can’t do the challenge 1 task

Bibtex summary

• Define a sensible looking DSL
• Restrict DSL (if necessary) while thinking

about a sample
– There is not always an obvious answer

• The derive in this restricted DSL is trivial
– Challenge 4 ☺

Deriving Instances

Back to instances

data Sample a = First | Second a a | Third a

instance Eq a ⇒ Eq (Sample a) where
First ≡ First = True
Second x1 x2 ≡ Second y1 y2 = x1 ≡ y1 && x1 ≡ y2 && True
Third x1 ≡ Third y1 = x1 ≡ y1 && True
_ ≡ _ = False

• Given sensible restrictions, how do we derive?

What must derive do?

derive :: Output → [DSL]
• Be correct
• Terminate, ideally quickly
• Hope to find an answer if one exists

• The following implementation is just one
possible version

Create guesses

guess :: OutputFragment → [Guess]

data Guess
= Guess DSL
| GuessCtr Int_0based DSL
| GuessFld Int_1based DSL

• Guess bottom-up and combine

Examples

x1 ≡ y1

x Fld1: i y Fld1: i≡

Fld1: xi Fld1: yi

Fld1: xi ≡ yi

Examples

Second x1 x2

Fld1: xi Fld2: xiCtr1: NAME

Ctr1: FIELDS xi

Ctr1: NAME (FIELDS xi)

Examples

x1 ≡ y1 && x2 ≡ y2 && True

Fld1: xi ≡ yi Fld2: xi ≡ yi&& True

Ctr1: FIELDS xi ≡ yi

Ctr1: FOLD (&&) True (FIELDS xi ≡ yi)

Guessing atoms - integers

• The number 2
– Might be the literal 2

– Might be the second field
– Might be the arity of constructor Second

– Might be the index of constructor Third

• Produce all these guesses

Guessing atoms - strings

• “Foo” – the literal string “Foo”
• “Second” – the name of Second

– not allowed to be a literal

• “Sample” – the name of the data type
– again, not allowed to be a literal

Application

• Given (a b)
– Guess a, then b, then combine if consistent

• Guess x can be turned into GuessCtr i x
• x1

– Guess (Lit “x”) & GuessFld 1 FieldInd
– GuessFld 1 (Lit “x” `Append` FieldInd)

Lists

• Can combine adjacent elements similar
like we do for application

• Can lift a complete sequence:
– [GuessFld 1 x, GuessFld 2 x] ⇒

GuessCtr 1 (Fields x)

– [GuessCtr 0 x, GuessCtr 1 x, GuessCtr 2 x] ⇒
Guess (Ctors x)

Special guesses

• Folds
– Special hard-coded patterns are recognised

– Turns into a fold, then normal guess on the
arguments to the fold

• Vector application
– haskell-src-exts has binary App nodes
– Sometimes vector application is required,

transform separately

Examples and Limitations

Module names

typename_Language =
mkTyCon "ModuleName.Language“

• This doesn’t work as the input doesn’t
contain the module name
– Can always enrich the input

– But might need a more complex sample

Infix constructors

show (Prefix a b) = [“Prefix”,show a,show b]
show (a :+: b) = [show a,“:+:”,show b]

• The input type doesn’t know about fixity
– Could enrich the input type

Type-based derivations

• Some classes make choices based on the
types of a constructors fields (i.e. Uniplate)

• The input doesn’t have type information
– If it did, a suitable sample would be huge

• Lack of type signatures means no -Wall
– Some functions can be derived without their

type sig, but not with

Variable naming

• Be careful when naming your variables

Second x y -- bad
Second x1 x2 -- good

• Think if you could come up with a simple
pattern

Redundant fold terms

• Specify redundant fold units to make a
pattern

[0, x1+x2, x1] -- bad
[0, x1+x2+0, x1+0] -- good

• Derive will usually optimise these bits
away

The empty record

• The empty record match is incredibly
useful

f (First{}) = …
f (Second{}) = …
f (Third{}) = …

Results

The results

• Our scheme is used in Derive
• Works (14)

– ArbitraryOld, Arities, Binary, BinaryDefer,
Bounded, Default, Enum, EnumCyclic, Eq,
Monoid, NFData, Ord, PlateTypeable, Serial

• Partial (4)
– Arbitrary, Data, DataAbstract, Read, Show

Main causes of failure

• Record based (5)
– Update, Set, Ref, LazySet, Has

• Type based (6)
– Uniplate, TTypeable, Traversable,

PlateDirect, Functor, Foldable

• Other (3)
– Is (type sig), Fold (type sig), Typeable (kind

info)

Conclusion

• From a single example we can define a
relationship
– Which is correct and predictable

• Has been practically applied to instance
generation (Derive tool)

cabal install derive

