
Defining your own build system
With Shake

Neil Mitchell

http://shakebuild.com

Who has heard of Shake?

• Competitor to Make, Ant, Scons, Waf, Ninja…

• Better, because:

– Expressive (powerful dependencies)

– Fast (faster than all the above*)

– Robust (big test suite, large users)

– Haskell library (nice abstractions)

– …

The tale of a large project

Day 1: Simple code, simple build system

Day 1000: Either repetitive code, or complex build
system (usually both?)

• Little repetition => one source for data =>
generated files => hard for build systems

• Abstractions => types and higher-order =>
hard for build systems

Generated files are hard

foo.c : foo.xml gen.sh
gen.sh foo.xml > foo.c

foo.o : foo.c ???
gcc -c foo.c

Before you start, what does foo.c #include?

Monadic dependencies

foo.c : foo.xml gen.sh
gen.sh foo.xml > foo.c

foo.o : foo.c
gcc -M foo.c | need
gcc -c foo.c

After generating foo.c, what does it #include?

Monadic dependencies

Determine future dependencies
based on the results

of previous dependencies

out : in
cp in out

Simple Shake

"out" %> \out -> do

 need ["in"]

 cmd "cp in out"

:: Rule ()
Monad Rule :: Action ()

Monad Action

(%>) :: FilePattern -> (FilePath -> Action ()) -> Rule ()

Congratulations

You now know Shake.
(At least enough to start with)

Your Goals for your Company

Why sneak in with Shake?

• Robust software in commercial use for > 6 years

• Has a nice underlying theory

• Build system is always hairy and unloved

• Speeding up the build gives measureable gain

– 10 sec per build, 60 builds/day, 30 devs = 1 extra dev

• Easy to replace alongside

• Not production code, no license/distribute issues

• Only need one or two Haskellers (this talk)
* Some of these apply to QuickCheck

Build systems (Makefiles)

Separate out metadata

Baked in (Haskell) Metadata (config)

How to run gcc
Hack for Win98

Add Java binding Ship carrot.exe

Ship sprout.exe
Ship mushroom.exe

carrot.hs comes from src/

mushroom.exe uses gcc

Haskell expert, changes rarely Everyone, ~10% of commits

Metadata Example

• Bob’s green grocers build a set of .exe’s from C
files.

• Identify the metadata!

– (What would be different if I had said Haskell files?)

Some Metadata

carrot = veg orange anti_rabbit

mushroom = fungus mushroom

sprout = veg yuk green

build.cfg

Prototype (1/4) - imports

import Development.Shake
import Development.Shake.Config
import Development.Shake.Util
import System.FilePath

Prototype (2/4) - main

main = shakeArgs shakeOptions $ do
 usingConfigFile "build.cfg"
 action $ do
 xs <- getConfigKeys
 need ["obj" </> x <.> "exe" | x <- xs]

Prototype (3/4) - linking

"obj/*.exe" %> \out -> do
 Just xs <- getConfig $ takeBaseName out
 let os = ["obj" </> x <.> "o" | x <- words xs]
 need os
 cmd "gcc -o" [out] os

Prototype (4/4) - compiling

"obj/*.o" %> \out -> do
 let src = takeBaseName out <.> "c"
 need [src]
 cmd "gcc -c" [src] "-o" [out]

Prototype (5/4) - running it

cabal update && cabal install shake
nano Shakefile.hs
runhaskell Shakefile.hs

Feedback from the team

• It works, it’s quick, and it’s already fully featured

– Profiling, progress prediction, parallelism

– Changes to build.cfg are tracked

– Supports most make command line options

• What’s missing?

Enhancements (1/3) – header tracking

 let src = takeBaseName out <.> "c"
 need [src]
- cmd "gcc -c" [src] "-o" [out]
+ let m = out <.> "m"
+ () <- cmd "gcc -c" [src] "-o" [out] "-MMD -MF" [m]
+ neededMakefileDependencies m

Enhancements (2/3) – cleaning

+ phony "clean" $ do
+ removeFilesAfter "obj" ["*"]

Enhancements (3/3) – add lex

- let src = takeBaseName out <.> "c"
+ b <- doesFileExist $ takeBaseName out <.> "lex"
+ let src = (if b then ("obj" </>) else id) $
+ takeBaseName out <.> "c"

+ "obj/*.c" %> \out -> do
+ let src = takeBaseName out <.> "lex"
+ need [src]
+ cmd "flex" ["-o" ++ out] src

Winning over developers

• Must do everything actual developers want to do

• Must be more correct (less over/under building)

• Must be faster

• Win developers one-by-one

• After a few switch, go for the lead dev

• Old system quietly dies quite rapidly

Progress prediction

• Guesses how long the build will take

– 3m12s more, is 82% complete

– Based on historical measurements plus guesses

– All scaled by a progress rate (guess at parallel setting)

– An approximation…

Ready for primetime

• Standard Chartered have been using Shake since 2009,
1000’s of compiles per day.

• factis research GmbH use Shake to compile their Checkpad
MED application.

• Samplecount have been using Shake since 2012, producing
several open-source projects for working with Shake.

• CovenantEyes use Shake to build their Windows client.

• Keystone Tower Systems has a robotic welder with a Shake
build system.

• FP Complete use Shake to build Docker images.

Don’t write a build system unless you have to!

Tips for the conversion

• Preserve the same directory/filepath structure

– Even if it is crazy

• Focus on a single platform to start with

• Convert bottom-up

• Config file is a good approach

• Ask if you get stuck

– Mailing list

– Stack Overflow

The GHC conversion (in progress)

• Following the previous slides (or vice versa)

• https://github.com/snowleopard/shaking-up-ghc

– Lead by Andrey Mokhov

alexArgs = builder Alex ? mconcat
 [arg "-g"
 , package compiler ? arg "--latin1"
 , arg =<< getInput
 , arg "-o", arg =<< getOutput]

https://github.com/snowleopard/shaking-up-ghc
https://github.com/snowleopard/shaking-up-ghc
https://github.com/snowleopard/shaking-up-ghc
https://github.com/snowleopard/shaking-up-ghc
https://github.com/snowleopard/shaking-up-ghc
https://github.com/snowleopard/shaking-up-ghc

Speed

• Shake is typically faster than Ninja, Make etc.

• What does fast even mean?

– Everything changed? Rebuild from scratch.

– Nothing changed? Rebuild nothing.

• In practice, a blend, but optimise both extremes
and you win

Fast when everything changes

• If everything changes, rule dominate (you hope)

• One rule: Start things as soon as you can

– Dependencies should be fine grained

– Start spawning before checking everything

– Make use of multiple cores

– Randomise the order of dependencies (~15% faster)

• Expressive dependencies, Continuation monad,
cheap threads, immutable values (easy in Haskell)

Fast when nothing changes

• Don’t run users rules if you can avoid it

• Shake records a journal, [(k, v, …)]

• Avoid lots of locking/parallelism

– Take a lock, check storedValue a lot

• Binary serialisation is a bottleneck

unchanged journal = flip allM journal $ \(k,v) ->

 (== Just v) <$> storedValue k

Poll

• I am already using Shake

• I intend to start using Shake

• I won’t be using Shake

– I don’t have a suitably sized project

– The existing system works fine

– Not enough time to try it out

– Management won’t agree to it

– I want to use something else

– Other

Questions?

http://shakebuild.com

