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The Aim

� Take a Haskell program
� Analyse it
� Prove statically that there are no 

“unsafe pattern matches”
� No additional user work

� Termination – not in 18 minutes!



Is this safe?
risers [] = []

risers [x] = [[x]]

risers (x:y:etc) =

if x <= y

then (x:s):ss

else [x]:(s:ss)

where (s:ss) = risers (y:etc)



Yes
risers [] = []

risers [x] = [[x]] -– ((x:[]):[])

risers (x:y:etc) =

if x <= y

then (x:s):ss

else [x]:(s:ss)

where (s:ss) = risers (y:etc)



How does Catch work?

� Transform to reduced Haskell
� Apply transformations on reduced 

Haskell
� Generate a condition for case safety
� Propagate this condition
� Figure out if the precondition is True



Pattern Matches

if x then f else g

f (x:xs) = x
f x = ys

where (y:ys)

let (a,b) = y
in (b,a)

f x | null x = []| otherwise = tail x
[x | Just x <- xs]

f [x] = x

do (x:xs) <- f y
return xs

\(a,b) ->
 a ++ b

case x of
[] -> True
(a:b) -> a



Reduced Haskell
� Only simple case, functions, 

applications, constructors

data [] = [] | (:) hd tl

map f xs =

case xs of

[] -> []

(:) -> f xs.hd : map f xs.tl



Generating Reduced Haskell

� Fully automatic
� Uses Yhc’s Core language

� Yhc is a fork of nhc98
� Specify –core or –corep to see it

� Some additional transformations
� Remove a few let’s

� By the end, reduced Haskell



Transformations
� About 8 are applied
� Reachability

� Eliminate dead code
� Arity raising

� Take out points free code
� odd = not . even

� Defunctionalisation [Reynolds 72]
� Remove all higher order functions



The Checker itself

� Operates on a simple first order 
language

� Uses constraints of the form:
� <expression, path, constructors>

� From the expression,
if I follow any valid path,
I get to one of the constructors



Constraints, intro by example
head (x:xs) = x
<head@1, λ, {:}>

fromJust (Just x) = x
<fromJust@1, λ, {Just}>

foldr1 f [x]    = x
foldr1 f (x:xs) = f x (foldr1 f xs)
<foldr1@2, λ, {:}>



Constraints with paths
mapHead x = case x of

[] -> []

(:) -> head x.hd : mapHead x.tl

<mapHead@1, tl*.hd, {:}>

<mapHead@1, hd, {:}> ^

<mapHead@1, tl.hd, {:}> ^

<mapHead@1, tl.tl.hd, {:}> ^ …



Dealing with recursion

� Just keep expanding it
� x ^ x.a ^ x.aa ^ x.aaa ^ x.aaaa

� At a certain depth, give up
� x.aaaa ->  x.aaa*

� Simplify after
� x ^ x.a ^ x.aa ^ x.aaa ^ x.aaa*  =  x.a*



Going back to Risers
<risers (y:etc), λ, {:}>
<(y:etc), λ, {:}>
True

Risers is safe ☺



Other programs

� Soda (Word search)
� One minor tweak required
� Was safe already

� Adjoxo (XOX checker)
� One fix requried
� Was NOT safe before
� Improves code readability



State of play

� Have a working prototype
� Full Haskell 98
� A number of Haskell 98 libraries
� Works on 1-2 page programs

� Still lots to do
� A bit slow in some cases
� Some programs don’t work yet



Conclusion

� CATCH is a practical tool for detecting 
pattern match errors

� Uses a constraint language to prove 
safety

� http://www.cs.york.ac.uk/~ndm/
� A release is coming soon (2 months)

http://www.cs.york.ac.uk/~ndm/


Transformation rules



Yhc vs GHC Core

� GHC Core is:
� More complex (letrec’s, lambda’s)
� Lacks source position information
� Piles and piles of type information
� Slower to generate
� Harder to change GHC
� Less like the original code
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