
CATCH: Case and Termination
Checker for Haskell

Neil Mitchell
(Supervised by Colin Runciman)
http://www.cs.york.ac.uk/~ndm/

http://www.cs.york.ac.uk/~ndm/

The Aim

� Take a Haskell program
� Analyse it
� Prove statically that there are no

“unsafe pattern matches”
� No additional user work

� Termination – not in 18 minutes!

Is this safe?
risers [] = []

risers [x] = [[x]]

risers (x:y:etc) =

if x <= y

then (x:s):ss

else [x]:(s:ss)

where (s:ss) = risers (y:etc)

Yes
risers [] = []

risers [x] = [[x]] -– ((x:[]):[])

risers (x:y:etc) =

if x <= y

then (x:s):ss

else [x]:(s:ss)

where (s:ss) = risers (y:etc)

How does Catch work?

� Transform to reduced Haskell
� Apply transformations on reduced

Haskell
� Generate a condition for case safety
� Propagate this condition
� Figure out if the precondition is True

Pattern Matches

if x then f else g

f (x:xs) = x
f x = ys

where (y:ys)

let (a,b) = y
in (b,a)

f x | null x = []| otherwise = tail x
[x | Just x <- xs]

f [x] = x

do (x:xs) <- f y
return xs

\(a,b) ->
 a ++ b

case x of
[] -> True
(a:b) -> a

Reduced Haskell
� Only simple case, functions,

applications, constructors

data [] = [] | (:) hd tl

map f xs =

case xs of

[] -> []

(:) -> f xs.hd : map f xs.tl

Generating Reduced Haskell

� Fully automatic
� Uses Yhc’s Core language

� Yhc is a fork of nhc98
� Specify –core or –corep to see it

� Some additional transformations
� Remove a few let’s

� By the end, reduced Haskell

Transformations
� About 8 are applied
� Reachability

� Eliminate dead code
� Arity raising

� Take out points free code
� odd = not . even

� Defunctionalisation [Reynolds 72]
� Remove all higher order functions

The Checker itself

� Operates on a simple first order
language

� Uses constraints of the form:
� <expression, path, constructors>

� From the expression,
if I follow any valid path,
I get to one of the constructors

Constraints, intro by example
head (x:xs) = x
<head@1, λ, {:}>

fromJust (Just x) = x
<fromJust@1, λ, {Just}>

foldr1 f [x] = x
foldr1 f (x:xs) = f x (foldr1 f xs)
<foldr1@2, λ, {:}>

Constraints with paths
mapHead x = case x of

[] -> []

(:) -> head x.hd : mapHead x.tl

<mapHead@1, tl*.hd, {:}>

<mapHead@1, hd, {:}> ^

<mapHead@1, tl.hd, {:}> ^

<mapHead@1, tl.tl.hd, {:}> ^ …

Dealing with recursion

� Just keep expanding it
� x ^ x.a ^ x.aa ^ x.aaa ^ x.aaaa

� At a certain depth, give up
� x.aaaa -> x.aaa*

� Simplify after
� x ^ x.a ^ x.aa ^ x.aaa ^ x.aaa* = x.a*

Going back to Risers
<risers (y:etc), λ, {:}>
<(y:etc), λ, {:}>
True

Risers is safe ☺

Other programs

� Soda (Word search)
� One minor tweak required
� Was safe already

� Adjoxo (XOX checker)
� One fix requried
� Was NOT safe before
� Improves code readability

State of play

� Have a working prototype
� Full Haskell 98
� A number of Haskell 98 libraries
� Works on 1-2 page programs

� Still lots to do
� A bit slow in some cases
� Some programs don’t work yet

Conclusion

� CATCH is a practical tool for detecting
pattern match errors

� Uses a constraint language to prove
safety

� http://www.cs.york.ac.uk/~ndm/
� A release is coming soon (2 months)

http://www.cs.york.ac.uk/~ndm/

Transformation rules

Yhc vs GHC Core

� GHC Core is:
� More complex (letrec’s, lambda’s)
� Lacks source position information
� Piles and piles of type information
� Slower to generate
� Harder to change GHC
� Less like the original code

	CATCH: Case and Termination Checker for Haskell
	The Aim
	Is this safe?
	Yes
	How does Catch work?
	Pattern Matches
	Reduced Haskell
	Generating Reduced Haskell
	Transformations
	The Checker itself
	Constraints, intro by example
	Constraints with paths
	Dealing with recursion
	Going back to Risers
	Other programs
	State of play
	Conclusion
	Transformation rules
	Yhc vs GHC Core

