Building stuff with
monadic dependencies +
unchanging dependencies +
polymorphic dependencies +

abstraction
Neil Mitchell

http://nmitchell.co.uk

Building stuff with

Shake
Neil Mitchell ‘
http://shakebuild.com “

What is Shake?

* A Haskell library for writing build systems

— Alternative to make, Scons, Ant, Waf...

* | wrote it at Standard Chartered in 2009
* | rewrote it open-source in 2012

Who has used Haskell? Shake?

When to use a build system

Not compiling stuff

Fractal rendering
Paleo experiments

Compiling stuff

| —

\

Use ShaD

Use Cabal
Use ghc --make
Use Visual Studio projects

Tutorial Overview

* Tutorial rules
— Ask if you don’t understand
— There is no end — | stop when the clock hits 0
— All slides will be online
— Not a “sales pitch”
— Questions for you in italic on most slides.

* One main example (compiling a C file)
* Lots of independent extensions to that

Main example) Some C files

/* main.c */
#include <stdio.h>
#tinclude "a.h"
#finclude "b.h"
void main() {

printf("%s %s\n",a,b);
}

What does this print?

/*a.h*/
char* a = "hello";

/*b.h */
char* b = "world";

Main example) Compiling C

gCC -C main.c
gCcC Main.o -0 main

What files are involved at each step?

Main example) Compiling C in Haskell

import Development.Shake

main = do
() <- emd "gcc -c main.c”
() <- cmmd "gcc main.o -o main”
return ()

Why do we have the ugly () <- line noise?

(Main example) A Shake system

"~ import Development.Shake
import Development.Shake.FilePath

Boilerplate

' main = shakeArgs shakeOptions S do

want ['main” <.> exe]

"main" <.> exe %> \out -> do
() <- emd "gcc -c main.c”
() <- cmd "gcec main.o -o main”
return ()

When will main.exe rebuild?

Main example) With dependencies

want ["'main" <.> exe]

"main" <.> exe %> \out -> do
need ["main.c”, "a.h", "b.h"]
() <- emd "gcc -¢ main.c”
() <- cmd "gcc main.o -o main”
return ()

Why is this a bad idea?

Main example) Asking gcc for depends

S gcc -MM main.c
main.o: main.c a.h b.h

Anyone used that before?

(Main example) Using gcc -MM

import Development.Shake.Util

"main" <.> exe %> \out -> do
Stdout s <- cmd "gcc -¢c -MM main.c"
need S concatMap snd S parseMakefile s
() <- cmd "gcc main.o -o main”
return ()

Did you know you can combine -c and -MM?

Main example) Two rules

"main.o" %> \out -> do
Stdout s <- cmd "gcc -¢c -MM main.c"
need S concatMap snd S parseMakefile s

"main" <.> exe %> \out -> do

need ["'main.o"]
cmd "gcc main.o -o main”

Why are two rules better?

Main example) The result

main = shakeArgs shakeOptions S do
want ["main" <.> exe]

"main" <.> exe %> \out -> do
need ['main.o"]

cmd "gcc main.o -o main”

"main.o" %> \out -> do
Stdout s <- emd "gcc -¢c -MM main.c”
need S concatMap snd S parseMakefile s

The “perfect” build system

A bunch of wants

— Each thing that goes in the release

* Abunch of rules
— Simple pattern
— A bunch of need, a bit of Haskell
— A single command line (occasionally two)

Your thoughts

4)
What goes
kin a release)
\f N £
What is the
. command)
N\
4 .)
What it
depends on

- J

(File patternsj Any file

"* 0" %> \out -> do
let src = out -<.> "c"
Stdout s <- cmd "gcc -¢c -MM" [src]

need S concatMap snd S parseMakefile s

Why do we use [src], not just src?

File patterns) Source to object

"obj//*.0" %> \out -> do
let src = "src" </> dropDirectoryl out -<.> "c"
Stdout s <- cmd "gcc -¢c -MM" [src] "-0" [out]
need S concatMap snd S parseMakefile s

What if we want to do lower-case files?

File patterns) Pattern predicates

(\x -> all isLower (takeBaseName x) &&
"* 0" ?==x) ?>\out -> do
let src = out -<.>"'c"
Stdout s <- cmd "gcc -¢c -MM" [src]

need S concatMap snd S parseMakefile s

What can’t we do?

(Version depsj Dependencies on SPATH

"main" <.> exe %> \out -> do
need ["'main.o"]
cmd "gcc main.o -o main”

* We depend on the version of gcc on SPATH
— But we don’t track it

What else don’t we track?

Version depsj Store gcc version

"gcc.version” %> \out -> do
alwaysRerun
Stdout s <- cmd "gcc --version”
writeFileChanged out s

What if we didn’t use writeFileChanged?

Version deps) Depending on gcc version

"main" <.> exe %> \out -> do
1| 1

need ["'main.o", "gcc.version"]
cmd "gcc main.o -o main”

Are two need’s after each other equivalent?

Dir contents) Compile all files in a dir

"main" <.> exe %> \out -> do
need ['main.o"]
cmd "gcc main.o -o main”

* Compilein all .c files in a directory

Do we already have enough to do that?

Dir contents) getDirectoryFiles

"main" <.> exe %> \out -> do
xs <- getDirectoryFiles "" ["*.c"]
let os = map (-<.> "0") xs
need os
cmd "gec” os -0 main”

What if we want to find all files recursively?

= W

The four features

Monadic (dynamic?) dependencies
Unchanging dependencies
Polymorphic dependencies
Abstraction

Where have we used each so far?

1: Monadic dependencies

* Ask for further dependencies at any point

— The need doesn’t have to be on the first line

* Absolutely essential
* Found in Shake (+clones), Redo, a bit in Scons

* Every non-monadic build system has hacks to
get some monadic power

— None are direct and powerful

2: Unchanging dependencies

* A dependency may rebuild, but not change
* Very important to reduce rebuilds

— Allows writeFileChanged, depending on gcc

e More common, but not in make, not a default
— Ninja = restat, Tup = *o”
— Redo = redo-ifchange
— Requires a database of metadata

3: Polymorphic dependencies

* Dependencies don’t have to be files

* |f you have monadic + unchanging,
polymorphic is no new power

— Just more convenient, avoid on-disk files

* Quite rare, only Shake that | know of
— (Redo has redo-ifcreate)

4: Abstraction

* Mostly a DSL vs EDSL question
— Custom languages usually lack abstraction
— Almost always lack package managers

* Monadic also makes abstraction easier
— Shake has about 7 released packages of rules
— Other build systems don’t seem to share as much

* Available in Scons, Shake, a few others

Generate .c) Generate the .c file

"main.c" %> \out -> do
need ["'main.txt"]
cmd Shell "generate main.txt > main.c”

Where is the bug?

Generate .c) Generate the .c file

"* 0" %> \out -> do
let src = out -<.> "c”
need [src]
Stdout s <- emd "gcc -¢c -MM" [src]

needed S concatMap snd S parseMakefile s

Is there a way to fix gcc -MM directly?

Avoid gcc -IVI) Manual header scan

usedHeaders :: String -> [FilePath]
usedHeaders src =

[init x

| x <-lines src

, Just x <- [stripPrefix "#include \"" x]]

What’s the disadvantage of a manual scan?

Avoid gcc -IVI) Manual header scan

"main.o" %> \out -> do
src <- readFile' "main.c"
need S usedHeaders src
cmd "gcc -c main.c”

What’s the advantage of a manual scan?

Generate .h) Generate the .h file

"* h" %> \out -> do
let src = out -<.> "txt"
need [src]
cmd Shell "generate" [src] ">" [out]

What made this change self-contained?

Transitive) One-step includes

["*.c.dep”,"*.h.dep"] |%> \out -> do
src <- readFile' S dropExtension out
writeFileLines out S usedHeaders src

What are we reusing?

Transitive) Transitive includes

"* deps" %> \out -> do
dep <- readFileLines S out -<.> "dep"
deps <- mapM (readFileLines . (<.> "deps")) dep
writeFileLines out S nub S
dropExtension out : concat deps

deps a = a : concatMap deps (dep a)

Transitive) Transitive includes

"main.o" %> \out -> do
src <- readFileLines "main.c.deps”
need src
cmd "gcc -c main.c”

How could we test this rule?

Config) Define config

* Keep regularly changing details out of .hs

build.cfg
main.exe = main foo
config.exe = config foo

Is this easy enough for Haskell-phobes?

Config) Interpret config

import Development.Shake.Config

usingConfigFile "build.cfg"
action S need =<< getConfigKeys

"* exe" %> \out -> do
Just src <- getConfig out
let os = map (<.>"0") S words src
need os

cmd "gec” os "-0" [out]

What else might we put in the config?

Resources) What is a resource?

* Build systems allocate CPU resources
 What about other resources?

* Only have 12 licenses for the FPGA tester
e Can only run one copy of Excel at a time

What are some other resources?

Resources) Using resources

disk <- newResource "Disk" 4
"* exe" %> \out ->
withResource disk 1 S
cmd "gcc -0" [out] ...

What is the performance impact?

Flags) Command line flags

S runhaskell Main.hs --help

Usage: shake [options] [target] ...

Options:
-B, --always-make
--no-build

--color, --colour
-d[=FILE], --debug[=FILE]
-j[=N], --Jobs[=N]

-k, --keep-going

-1, --lint

--live[=FILE]
--assume-skip

-p[=N], --progress[=N]

. 57 lines in total ...

Unconditionally make all targets.

Don't build anything.

Colorize the output.

Print lots of debugging information.

Allow N jobs/threads at once [default CPUs].
Keep going when some targets can't be made.
Perform limited validation after the run.

List the files that are live [to live.txt].

Don't remake any files this run.

Show progress messages [every N secs, default 5].

Flags) Flags vs options

opts = shakeOptions{shakeThreads=8}
main = shakeArgs opts ...

S runhaskell Main.hs -j5

Who wins? Developer or user?

Flags) Named arguments

phony "clean" S do
removeFilesAfter ".shake" ["//*"]

Why removefFilesAfter?

Flags) Extra flags

data Flags = DistCC

flags = Option ™" ["distcc”]
(NoArg S Right DistCC)
"Run distributed.”

main = shakeArgsWith shakeOptions [flag] ...

What do non-flags args do by default?

Also files) Many-out

["*.0","*.hi"] &%> \[o,hi] -> do
let hs = 0 -<.> "hs"
need ... -- all files the .hs import
cmd "ghc -c" [hs]

Could we avoid & %> ?

Lint) Lint rules

* Enable by passing --lint
— Don’t change current directory
— Files written only once
— Files not used before need

* Enabled by passing --lint-tracker
— Dependencies are not used without need

What others?

Lint) Lint rules

"main.o" %> \out -> do
Stdout s <- cmd "gcc -¢c -MM main.c"
needed S concatMap snd S parseMakefile s

When is needed safe?

Error:
Out of slides

