
Building stuff with
monadic dependencies +

unchanging dependencies +
polymorphic dependencies +

abstraction
Neil Mitchell

http://nmitchell.co.uk

Building stuff with

Shake
Neil Mitchell

http://shakebuild.com

What is Shake?

• A Haskell library for writing build systems

– Alternative to make, Scons, Ant, Waf…

• I wrote it at Standard Chartered in 2009

• I rewrote it open-source in 2012

Who has used Haskell? Shake?

When to use a build system

Not compiling stuff Compiling stuff

Use Shake

Use Cabal
Use ghc --make
Use Visual Studio projects

Fractal rendering
Paleo experiments

Tutorial Overview

• Tutorial rules

– Ask if you don’t understand

– There is no end – I stop when the clock hits 0

– All slides will be online

– Not a “sales pitch”

– Questions for you in italic on most slides.

• One main example (compiling a C file)

• Lots of independent extensions to that

Main example Some C files

/* main.c */
#include <stdio.h>
#include "a.h"
#include "b.h"
void main() {
 printf("%s %s\n",a,b);
}

/* a.h */
char* a = "hello";

/* b.h */
char* b = "world";

What does this print?

Main example Compiling C

gcc -c main.c
gcc main.o -o main

What files are involved at each step?

Main example Compiling C in Haskell

import Development.Shake

main = do
 () <- cmd "gcc -c main.c"
 () <- cmd "gcc main.o -o main"
 return ()

Why do we have the ugly () <- line noise?

Main example A Shake system

import Development.Shake
import Development.Shake.FilePath

main = shakeArgs shakeOptions $ do
 want ["main" <.> exe]
 "main" <.> exe %> \out -> do
 () <- cmd "gcc -c main.c"
 () <- cmd "gcc main.o -o main"
 return ()

B
o

ile
rp

la
te

When will main.exe rebuild?

Main example With dependencies

want ["main" <.> exe]
"main" <.> exe %> \out -> do
 need ["main.c", "a.h", "b.h"]
 () <- cmd "gcc -c main.c"
 () <- cmd "gcc main.o -o main"
 return ()

Why is this a bad idea?

Main example Asking gcc for depends

$ gcc -MM main.c
main.o: main.c a.h b.h

Anyone used that before?

Main example Using gcc -MM

import Development.Shake.Util

"main" <.> exe %> \out -> do
 Stdout s <- cmd "gcc -c -MM main.c"
 need $ concatMap snd $ parseMakefile s
 () <- cmd "gcc main.o -o main"
 return ()

Did you know you can combine -c and -MM?

Main example Two rules

"main.o" %> \out -> do
 Stdout s <- cmd "gcc -c -MM main.c"
 need $ concatMap snd $ parseMakefile s

"main" <.> exe %> \out -> do
 need ["main.o"]
 cmd "gcc main.o -o main"

Why are two rules better?

Main example The result

main = shakeArgs shakeOptions $ do
 want ["main" <.> exe]

 "main" <.> exe %> \out -> do
 need ["main.o"]
 cmd "gcc main.o -o main"

 "main.o" %> \out -> do
 Stdout s <- cmd "gcc -c -MM main.c"
 need $ concatMap snd $ parseMakefile s

The “perfect” build system

• A bunch of wants

– Each thing that goes in the release

• A bunch of rules

– Simple pattern

– A bunch of need, a bit of Haskell

– A single command line (occasionally two)

Your thoughts

What goes
in a release

What is the
command

What it
depends on

File patterns Any file

"*.o" %> \out -> do
 let src = out -<.> "c"
 Stdout s <- cmd "gcc -c -MM" [src]
 need $ concatMap snd $ parseMakefile s

Why do we use [src], not just src?

File patterns Source to object

"obj//*.o" %> \out -> do
 let src = "src" </> dropDirectory1 out -<.> "c"
 Stdout s <- cmd "gcc -c -MM" [src] "-o" [out]
 need $ concatMap snd $ parseMakefile s

What if we want to do lower-case files?

File patterns Pattern predicates

(\x -> all isLower (takeBaseName x) &&
 "*.o" ?== x) ?> \out -> do
 let src = out -<.> "c"
 Stdout s <- cmd "gcc -c -MM" [src]
 need $ concatMap snd $ parseMakefile s

What can’t we do?

Version deps Dependencies on $PATH

"main" <.> exe %> \out -> do
 need ["main.o"]
 cmd "gcc main.o -o main"

• We depend on the version of gcc on $PATH

– But we don’t track it

What else don’t we track?

Version deps Store gcc version

"gcc.version" %> \out -> do
 alwaysRerun
 Stdout s <- cmd "gcc --version"
 writeFileChanged out s

What if we didn’t use writeFileChanged?

Version deps Depending on gcc version

"main" <.> exe %> \out -> do
 need ["main.o", "gcc.version"]
 cmd "gcc main.o -o main"

Are two need’s after each other equivalent?

Dir contents Compile all files in a dir

"main" <.> exe %> \out -> do
 need ["main.o"]
 cmd "gcc main.o -o main"

• Compile in all .c files in a directory

Do we already have enough to do that?

Dir contents getDirectoryFiles

"main" <.> exe %> \out -> do
 xs <- getDirectoryFiles "" ["*.c"]
 let os = map (-<.> "o") xs
 need os
 cmd "gcc" os "-o main"

What if we want to find all files recursively?

The four features

1. Monadic (dynamic?) dependencies

2. Unchanging dependencies

3. Polymorphic dependencies

4. Abstraction

Where have we used each so far?

#1: Monadic dependencies

• Ask for further dependencies at any point

– The need doesn’t have to be on the first line

• Absolutely essential

• Found in Shake (+clones), Redo, a bit in Scons

• Every non-monadic build system has hacks to
get some monadic power

– None are direct and powerful

#2: Unchanging dependencies

• A dependency may rebuild, but not change

• Very important to reduce rebuilds

– Allows writeFileChanged, depending on gcc

• More common, but not in make, not a default

– Ninja = restat, Tup = ^o^

– Redo = redo-ifchange

– Requires a database of metadata

#3: Polymorphic dependencies

• Dependencies don’t have to be files

• If you have monadic + unchanging,
polymorphic is no new power

– Just more convenient, avoid on-disk files

• Quite rare, only Shake that I know of

– (Redo has redo-ifcreate)

#4: Abstraction

• Mostly a DSL vs EDSL question

– Custom languages usually lack abstraction

– Almost always lack package managers

• Monadic also makes abstraction easier

– Shake has about 7 released packages of rules

– Other build systems don’t seem to share as much

• Available in Scons, Shake, a few others

Generate .c Generate the .c file

"main.c" %> \out -> do
 need ["main.txt"]
 cmd Shell "generate main.txt > main.c"

Where is the bug?

Generate .c Generate the .c file

Is there a way to fix gcc -MM directly?

"*.o" %> \out -> do
 let src = out -<.> "c“
 need [src]
 Stdout s <- cmd "gcc -c -MM" [src]
 needed $ concatMap snd $ parseMakefile s

Avoid gcc -M Manual header scan

usedHeaders :: String -> [FilePath]
usedHeaders src =
 [init x
 | x <- lines src
 , Just x <- [stripPrefix "#include \"" x]]

What’s the disadvantage of a manual scan?

Avoid gcc -M Manual header scan

"main.o" %> \out -> do
 src <- readFile' "main.c"
 need $ usedHeaders src
 cmd "gcc -c main.c"

What’s the advantage of a manual scan?

Generate .h Generate the .h file

"*.h" %> \out -> do
 let src = out -<.> "txt"
 need [src]
 cmd Shell "generate" [src] ">" [out]

What made this change self-contained?

Transitive One-step includes

["*.c.dep","*.h.dep"] |%> \out -> do
 src <- readFile' $ dropExtension out
 writeFileLines out $ usedHeaders src

What are we reusing?

Transitive Transitive includes

"*.deps" %> \out -> do
 dep <- readFileLines $ out -<.> "dep"
 deps <- mapM (readFileLines . (<.> "deps")) dep
 writeFileLines out $ nub $
 dropExtension out : concat deps

deps a = a : concatMap deps (dep a)

Transitive Transitive includes

"main.o" %> \out -> do
 src <- readFileLines "main.c.deps"
 need src
 cmd "gcc -c main.c"

How could we test this rule?

Config Define config

build.cfg
main.exe = main foo
config.exe = config foo

Is this easy enough for Haskell-phobes?

• Keep regularly changing details out of .hs

Config Interpret config

import Development.Shake.Config

usingConfigFile "build.cfg"
action $ need =<< getConfigKeys

"*.exe" %> \out -> do
 Just src <- getConfig out
 let os = map (<.> "o") $ words src
 need os
 cmd "gcc" os "-o" [out]

What else might we put in the config?

Resources What is a resource?

What are some other resources?

• Build systems allocate CPU resources

• What about other resources?

• Only have 12 licenses for the FPGA tester

• Can only run one copy of Excel at a time

Resources Using resources

What is the performance impact?

disk <- newResource "Disk" 4
"*.exe" %> \out ->
 withResource disk 1 $
 cmd "gcc -o" [out] ...

Flags Command line flags

$ runhaskell Main.hs --help

Usage: shake [options] [target] ...
Options:
 -B, --always-make Unconditionally make all targets.
 --no-build Don't build anything.
 --color, --colour Colorize the output.
 -d[=FILE], --debug[=FILE] Print lots of debugging information.
 -j[=N], --jobs[=N] Allow N jobs/threads at once [default CPUs].
 -k, --keep-going Keep going when some targets can't be made.
 -l, --lint Perform limited validation after the run.
 --live[=FILE] List the files that are live [to live.txt].
 --assume-skip Don't remake any files this run.
 -p[=N], --progress[=N] Show progress messages [every N secs, default 5].

... 57 lines in total ...

Flags Flags vs options

opts = shakeOptions{shakeThreads=8}
main = shakeArgs opts …

$ runhaskell Main.hs -j5

Who wins? Developer or user?

Flags Named arguments

phony "clean" $ do
 removeFilesAfter ".shake" ["//*"]

Why removeFilesAfter?

Flags Extra flags

data Flags = DistCC
flags = Option "" ["distcc"]
 (NoArg $ Right DistCC)
 "Run distributed."

main = shakeArgsWith shakeOptions [flag] …

What do non-flags args do by default?

Also files Many-out

Could we avoid &%> ?

 ["*.o","*.hi"] &%> \[o,hi] -> do
 let hs = o -<.> "hs"
 need ... -- all files the .hs import
 cmd "ghc -c" [hs]

Lint Lint rules

What others?

• Enable by passing --lint

– Don’t change current directory

– Files written only once

– Files not used before need

• Enabled by passing --lint-tracker

– Dependencies are not used without need

Lint Lint rules

When is needed safe?

"main.o" %> \out -> do
 Stdout s <- cmd "gcc -c -MM main.c"
 needed $ concatMap snd $ parseMakefile s

Error:
Out of slides

