
Unfailing Haskell:
A Static Checker for Pattern Matching

Neil Mitchell and Colin Runciman
http://www.cs.york.ac.uk/∼ndm , http://www.cs.york.ac.uk/∼colin

University of York, UK

Abstract

A Haskell program may fail at runtime with a pattern-match error if the program has
any incomplete (non-exhaustive) patterns in definitions or case alternatives. This pa-
per describes a static checker that allows non-exhaustive patterns to exist, yet ensures
that a pattern-match error does not occur. It describes a constraint language that can
be used to reason about pattern matches, along with mechanisms to propagate these
constraints between program components.

1 INTRODUCTION

Programming in Haskell is closer to a mathematical ideal than programming in im-
perative languages such as C. But many functions in Haskell are partial, not total.
Turner [9] argues convincingly that what is needed is a functional programming
language in which every program executes to completion, without raising an error.
In the discipline of total functional programming that Turner proposes it is impos-
sible to write either programs that generate case errors or that do not terminate.
Another way of describing this is that⊥ is removed from the language. The ques-
tion of non-exhaustive patterns is dealt with using the rule that all patterns must
be exhaustive. Turner argues that this system will “force you to pay attention to
exactly those corner cases which are likely to cause trouble” [9].

But this approach requires sacrifices – one notable casualty is thehead func-
tion. Sincehead can raise an error if the argument is an empty list, the standard
definition cannot be used in Turner’s total programming language. It would be nice
to obtain some of the benefits of a total programming language, namely its unfail-
ing nature, without losing the natural definition ofhead . This paper contributes
the design of a pattern-match checker for Haskell.

1.1 Motivating Example

In order to show what the checking tool gives us, consider the following example:

risers :: Ord a => [a] -> [[a]]
risers [] = []
risers [x] = [[x]]
risers (x:y:etc) = if x <= y then (x:s):ss else [x]:(s:ss)

where (s:ss) = risers (y:etc)

A sample execution of this function would be:

> risers [1,2,3,1,2]
[[1,2,3],[1,2]]

In the last line of the definition,(s:ss) is matched against the output of
risers . If risers (y:etc) returns an empty list this would cause a pattern
match error. It takes a few moments to check this program manually – and a few
more to be sure one has not made a mistake! Turning the program over to the
checker developed in this paper, the output is:

> (risers (y:etc)) {: }
> True

The checker first decides that for the code to be safe the recursive call to
risers must always yield a non-empty list. It then notices that if the argument in
a riser application is non-empty, then so will the result be. This satisfies it, and
it returns True, guaranteeing that no pattern-match errors will occur.

2 REDUCED HASKELL

The full Haskell language is a bit unwieldy for analysis. In particular the syntactic
sugar complicates analysis by introducing more types of expression to consider.
The checker works instead on a simplified language, a core to which other Haskell
programs can be reduced. This core language is a functional language, making use
of case expressions, function applications and algebraic data types.

In this reduced language types and arities are not explicit. Also, there are
no named data variables – all variables are referred to by their relationship to an
argument. For example,@1refers to the first argument of the function in whose
body it appears, and@1.Cons2 refers to the second component of theCons-
constructed first argument.Cons2 is called aselector.

Example 1

data List = Cons | Nil

head = case @1 of Cons -> @1.Cons 1

map = case @2 of
Nil -> Nil
Cons -> Cons (@1 @2.Cons 1) (map @1 @2.Cons2)

reverse = rev @1 Nil

rev = case @1 of
Nil -> @2
Cons -> rev @1.Cons 2 (Cons @1.Cons 1 @2) ♦

E ::= arg m (written@m) | sel E C m(writtenE.Cm)
| make C E1 · · ·En | func f
| apply E0 E1 · · ·En | case E0 of {C1 -> E1; · · · ; Cn -> En}

f is the name of a function,C is the name of a constructor,m is a positive integer

FIGURE 1. Abstract Syntax of expressions in reduced Haskell

From now onCons1 andCons2 will be written ashead and tail respec-
tively, this is purely to aid understanding for the human reader.

2.1 Values

The values in this reduced language consist only of algebraic data types, and func-
tions. A value is either a function, or a constructor and a list of component values.
The type of a value can be deduced statically – whether it is a function or an alge-
braic value, and in the second case, what are its possible constructors.

2.2 Expressions

Expressions in reduced Haskell are defined in Figure 1. A convertor from a subset
of Haskell to this reduced language has been written, and all examples from here
onwards use this convertor.

2.3 Higher Order

The current checker is not fully higher order, but some higher-order programs can
be checked successfully.

The checker tries to eliminate higher-order functions by specialization. A func-
tion can be specialized in itsnth argument if in all recursive calls this argument is
invariant. (There are slight additional complications, due to mutual recursion).

Examples of common functions whose applications can be specialized in this
way includemap, filter , foldr andfoldl .

When a function can be specialized, the expression passed as thenth argument
has all its free variables passed as extra arguments, and is expanded in the special-
ized version. All recursive calls within the new function are then renamed

Example 2

map f xs = case xs of
[] -> []
a:b -> f a : map f b

adds x n = map (add n) x

is transformed into:

Find non-exhaustive patterns Find callers

Backward analysis
Fixed pointing Report result

-

?
6

-

FIGURE 2. Checker Overview

map_adds n xs = case xs of
[] -> []
a:b -> add n a : map_adds n b

adds x n = map_adds n x ♦

Although this firstification approach is not complete by any means, it appears
to be sufficient for a large range of examples. Alternative methods are available for
full firstification, such as that detailed by Hughes [4].

3 OVERVIEW

The checking process has two main ingredients, a constraint language for express-
ing properties on data structures and some mechanisms for generating and manipu-
lating constraints to reflect the definition of functions. Both are introduced in detail
later on, but first a sketch overview of the checking process is given. A diagram of
the process is given in Figure 2

At each stage, the information passed “along the arrows” is a predicate, where
the atoms are constraints as introduced in§4. These constraints can either refer to
any reduced Haskell expression, or in a special case can refer only to parameters
to functions.

The initial stage of finding all non-exhaustive case expressions is done with a
basic syntactic check, at a very local level. Initial constraints are generated from
these expressions.

Finding all callers is relatively straightforward if all constraints are only on
arguments to functions. The result of this stage are constraints on expressions.

Backward analysis and fixed pointing convert back from constraints on expres-
sions into constraints on arguments. Backward analysis performs the translation,
but without regard to recursive function calls. Fixed pointing modifies constraints
to reflect the recursive calls.

This process continues, until the predicate is reduced to either True or False.
If the end result is True, then the system is free from pattern-match errors. If it is
False, then the systemmaygive rise to pattern errors. The checker is conservative.

In practice False is always accompanied by a history of derivations, ending in

False. These derivations allow the user to gain insight into a possible cause of
failure.

4 A CONSTRAINT LANGUAGE

In order to implement a checker that can ensure unfailing patterns, it is useful to
have some way of expressing classes of data values. A constraint is written as
α.r{c}, whereα is an expression,r is a regular expression over selectors andc is a
set of constructors. Such a constraint asserts that any well-defined application toα
of a path of selectors described byr must reach a constructor in the setc.

These constraints are used as atoms in a predicate language with conjunction
and disjunction, so constraints can be about several expressions and relations be-
tween them. The checker does not require a negation operator. We also use the
term constraint to refer to logical formulae with constraints as atoms.

Example 3

Consider the functionminimum , defined as:

minimum [x] = x
minimum (a:b:xs) = minimum ((if a < b then a else b) : xs)

Now consider the expressionminimum α. The constraint that must hold for
this expression to be safe isα{: }. This says that the expressionα must reduce to
an application of: , i.e. a non-empty list. ♦

Example 4

Consider the expressionmap minimum α. In this case the constraint generated
is α. * tail.head {: }. The part following theα is a regular expression, with the

* operator being applied prefix. If we apply any number (possibly zero) oftail s
to α, then applyhead , we reach a: . Values satisfying this constraint include[]
and[[1],[2],[3]] , but not[[1],[]] . ♦

Constraints divide up into three parts – thesubject, the path and thecondi-
tion. These are usually written asα.r{c}, but for certain equations writing them as
〈α, r,c〉 is easier.

The subject in the above two examples was justα, representing any expression –
including a call, a construction or even acase .

The path is a regular expression over selectors.

A regular expression is defined as:

s+ t union of regular expressionss andt
s.t concatenation of regular expressionss thent
∗s any number (possibly zero) occurrences ofs
Cn a constructorC and an integern, being a selector
λ the language is the set containing the empty string
φ the language is the empty set

The condition is a set of constructors which, due to static type checking, must all
be of the same type.

So the first example,α{: }, could have been written more fully asα. λ{: } –
whereλ is the regular expression which describes the language consisting only of
the empty string.

The meaning of a constraint is defined by:

α.r{c}⇔ (∀l ∈ L(r)•exists(α, l)⇒ constructor(α.l) ∈ c)

exists(_,Λ) = True
exists(Ca1 . . .an,C′i .ω) = C≡C′∧exists(ai ,ω)

HereL(r) is the language represented by the regular expressionr; exists returns
true if a value has a given path; and constructor gives the constructor used to create
the data. Of course, sinceL(r) is potentially infinite, this cannot be checked by
enumeration.

If there are no expressions which can be found following any instance of the
path, then the constraint is vacuously true.

4.1 Simplifying the Constraints

From the formal definition of the constraints it is possible to construct a number of
identities which can be used for simplification.

Path does not exist: in the constraint[].head {: } the expression[] does not
have ahead path, so this constraint simplifies to true.

Detecting failure: the constraint[] {: } simplifies to false because the[] value
is not the constructor: .

Empty path: in the constraintα. φ{c}, the regular expression isφ, the empty lan-
guage, so the constraint is always true.

Exhaustive conditions: in the constraintα{:,[] } the condition lists all the pos-
sible constructors, and because of static typingα must be one of these, there-
fore this constraint simplifies to true.

Algebraic conditions: finally a few algebraic equivalences:

α.r1{c}∨α.r2{c} = α.(r1 + r2){c}
α.r{c1}∨α.r{c2} = α.r{c1∪c2}
α.r{c1}∧α.r{c2} = α.r{c1∩c2}

5 DETERMINING THE CONSTRAINTS

This section concerns the derivation of the constraints, and the operations involved
in this task. An overview of the stages presented here, and how they relate to each
other, is given in§3.

5.1 The Initial Constraints

In general, acase expression:

case α of Sel 1 -> val 1; ...; Sel n -> val n

produces the initial constraintα{Sel 1,...,Sel n}. If the case alternatives are
exhaustive, then this can be simplified to true. Allcase expressions in the program
are found, their initial constraints are found, and these are joined together with
conjunction.

5.2 Transforming the constraints

For each constraint in turn, if the subject isf@n, the checker searches for every
function call off , and gets the expression corresponding to itsnth argument. On
this expression, it sets the existing constraint. This argument is then transformed
using a backward analysis (see§5.3), until a constraint on arguments is found.

Example 5

Given the constraintminimum@1{: }, if the program contains the expression:

f = minimum (g @1)

then the derived constraint is(g f@1) {: }. That is, the expression passed as
minimum ’s first argument must evaluate to a non-empty list. ♦

5.3 Backward Analysis

Backward analysis is the process which takes a constraint in which the subject
is a compound expression, and changes it to a combination of constraints over
arguments only. This process is denoted by a functionϕ(α, r,c) whereα is the
expression,r is the path andc is the condition. This function is detailed in Figure 3.
In order to denote the evaluation of an expression into a value, there is a relation
D, which is not defined in this paper.

ϕ(arg n, r,c)→ 〈qual(n), r,c〉

ϕ(E, r,c)→ 〈E′, r ′,c′〉
ϕ(sel E C m, r,c)→ 〈E′,Cm.r ′,c′〉

ϕ(E1,
∂r

∂C1
,c)→ E′1, · · · ,ϕ(En,

∂r
∂Cn

,c)→ E′n
ϕ(make C E1 · · ·En)→ (λ ∈ L(r)⇒C∈ c)∧E′1∧·· ·∧E′n

ϕ(D(E0), r,c)→ P
P[〈arg 1, r1,c1〉/ϕ(E1, r1,c1), · · · ,〈arg n, rn,cn〉/ϕ(En, rn,cn)]→ P′

ϕ(apply E0 E1 · · ·En, r,c)→ P′

C = {x|type(x) = type(C1)}
P = (ϕ(E,λ,C\C1)∨ϕ(E1, r,c))∧·· ·∧ (ϕ(E,λ,C\Cn)∨ϕ(En, r,c))

ϕ(case E of {C1-> E1; · · · ; Cn-> En}, r,c)→ P

FIGURE 3. Specification of backward analysis,ϕ

The arg rule qualifies the argument before putting it in the condition. In every
expression, all thearg references can be qualified with the name of the
function they appear in. For example, in the body of the functionf , arg n
is qualified tof@n.

The sel rule says that if a constraint is satisfied on the expression used before a
selector, then following this selector obtains the new constraint.

The make rule says that the condition must be true on the constructor used in the
make expression ifλ is in the language represented by the regular expres-
sion. This corresponds precisely to theempty word property[3], which can
be calculated structurally on the regular expression. For each of the argu-
ments to the data structure, it must be true that the condition holds when the
derivative of the regular expression with respect to that constructor and ar-
gument position is taken. This is denoted by the∂r/∂Ci . The differentiation
method is based on that described in [3].

The apply rule uses the result of backward analysis applied to the function to
find preconditions on the arguments. While this is fine in theory, it is not
necessarily terminating – in fact the naive application of this rule to any
function with a recursive call will loop forever. To combat this, if a function

is already in the process of being evaluated with the same constraint, its
result is given as true, and the recursive arguments are put into a special pile
to be examined later on.

The case rule generates a conjunct for each alternative. The generated condition
says either the subject of the case analysis has a different constructor (so this
particular alternative is not executed in this circumstance), or the right hand
side of the alternative is safe given the conditions for this expression. So
if the checker can prove a given alternative in a case is not taken in this
situation, it can ignore that alternative.

5.4 Obtaining a Fixed Point

We have noted that if a function is in the process of being evaluated, and its value is
asked for again with the same constraints, then the call is deferred. After backwards
analysis has been performed on the result of a function, there will be a constraint
in terms of the arguments, along with a set of recursive calls. If these recursive
calls had been analyzed further, then the checking computation would not have
terminated.

Example 6

mapHead xs = case xs of
[] -> []
a:b -> head a : mapHead b

The functionmapHead is exactly equivalent tomap head. Running the
checker over this function, the constraint generated ismapHead@1.head{: },
and the only recursive call noted ismapHead @1.tail . Observe that the con-
straint only mentions the first element in the list, while the desired constraint would
mention them all. In effectmapHead has been analyzed without considering any
recursive applications.

Having obtained this constraint and recursive call, the checker attempts to find
a fixed point. It does this by noting that the first argument in the recursive call is
@1.tail . The notation used for this is@1←↩ @1.tail . What predicate would
have to be satisfied ifn recursive calls to the function were performed? Denoting
this predicate asPn, whereP0 is the initial constraint:

Pn+1 = Pn∧Pn[@1/@1.tail]

So for themapHead function:
P0 = @1{: }
P1 = @1{: } ∧ @1.tail {: }
P2 = @1{: } ∧ @1.tail {: } ∧ @1.tail.tail {: }

The checker attempts to find a fixed pointP∞ such that

Pn = Pn+1⇒ P∞ = Pn

but in this example there is no fixed point. If a fixed point cannot be established, the
system has special rules for dealing with a limited set of common circumstances.

FormapHeadwe have@1←↩ @1.tail , so@1∞ = @1.* tail . With this
knowledge the constraint can be written by replacing@1with @1∞. We then obtain
the desired constraint, thatmapHead@1.* tail.head {: }. ♦

In general if an expression exists of the form@i ←↩ @i.path then@i∞ =
@i. * (path) . A special case is wherepath is λ. In this case@i∞ = @i.

While these special-case rules handle many directly recursive functions, they
do not work for all.

Example 7

Consider the functionreverse written using an accumulator:

reverse x = reverse2 x []

reverse2 x y = case x of
a:b -> reverse2 b (a:y)
[] -> y

Argument@1follows the pattern@1←↩ @1.tail , but we also have@2←↩
(@1.head : @2) . If the program being analyzed containedmain x = map
head (reverse x) , the part of the condition that applies toreverse2@2
before the fixed pointing isreverse2@2. * tail.head {: }.

In this case a second rule for obtaining a fixed point is needed. This second
rule handles recursive calls of the form

@i ←↩ C x1 · · · xn @i

(Where the positions of@i andx within C can be reordered, withR(x) giving
the position of any variable.) The constraint must be〈@i, r,c〉, with ∂r/∂CR(@i) = r.
In this case,P∞ is defined to be:

(λ ∈ L(r)⇒ C∈ c)∧
n̂

i=1

〈x i ,CR(x i).
∂r

∂CR(x i)
,c〉

In thereverse example the final condition is, as expected:

reverse2@1. * tail.head {: } ∧ reverse2@2. * tail.head {: } ♦

6 SOME SMALL EXAMPLES AND A CASE STUDY

Example 8

head x = case x of
a:b -> a

main x = head x
> head@1{: }
> False[main@1 {: }]

This example requires only initial constraint generation, and a simple propagation.
♦

Example 9

main x = map head x
> head@1{: }
> map_head@1.* tail.head {: }
> False[main@1. * tail.head {: }]

This example shows specialization generating a new functionmap_head, fixed
pointing being applied tomap, and the constraints being propagated through the
system. ♦

Example 10

main x = map head (reverse x)
-- reverse x is defined with an accumulator
> head@1{: }
> map_head@1.* tail.head {: }
> False[main@1. * tail {: } ∨ main@1. * tail.head {: }]

This result may at first seem surprising. The first disjunct of the constraint says
that applyingtail any number of times tomain@1 (also known asx) the result
must always be a: , in other wordsx must be infinite. This guarantees case safety
becausereverse is tail strict, so if its argument is an infinite list, no result will
ever be produced, and a case error will not occur. The second disjunct says, less
surprisingly, that the list before it is reversed must be a list in which every element
is a non-empty list. ♦

Example 11

main x = tails x
tails x = foldr tails2 [[]] x
tails2 x y = (x:head y) : y
> head@1{: }
> tails2@2 {: }
> fold_tails2@2. * tail.tail {: } ∨ fold_tails2@1 {: }
> True

This final example uses a fold to calculate thetails function. But as the auxiliary
tails2 makes use ofhead – it is not (at first glance) free from pattern-match
errors. The first two lines of the output are simply moving the constraint around.
The third line is the interesting one. In this line the checker gives two alternative
conditions for case safety – either the first argument is a: , or the list is either
zero length or it is infinite. The way the requirement for zero or infinite length is
encoded is by the path* tail.tail . If the list is of zero length, then there are no
tails, and no words in the regular expression language match. If however, there is
one tail, then that tail, and all successive tails must be: . So eitherfoldr does not
call its function argument because it immediately takes the zero case, orfoldr
recurses infinitely, and therefore the function is never called. Either way, because
the initial argument tofoldr is a: , and becausetails2 always returns a: , the
second part of the condition can be satisfied. ♦

6.1 The Clausify Program

Our goal is to check standard Haskell programs, and to provide useful feedback to
the user. To test the checker against those objectives we have used several Haskell
programs, all written some time ago for other purposes. The analysis of one pro-
gram is discussed below.

The Clausify program has been around for a very long time, since at least
1990. It has made its way into thenofib benchmark suite [5], and was the focus
of several papers on heap profiling [6]. It parses logical propositions and puts them
in clausal form. We ignore the parser and jump straight to the transformation of
propositions. The data structure for a formula is:

data F =
Sym Char | Not F | Dis F F | Con F F | Imp F F | Eqv F F

and the main pipeline is:

clauses =
concat . map disp . unicl . split . disin . negin . elim

Each of these stages takes a proposition and returns an equivalent version –
for example theelim stage replaces implications with disjunctions and negation.
Each stage eliminates certain forms of proposition, so that future stages do not
have to consider them. Despite most of the stages being designed to deal with a
restricted class of propositions, the only function which contains a non-exhaustive
pattern match is in the definition ofclause (a helper function forunicl).

clause p = clause’ p ([] , [])
where

clause’ (Dis p q) x = clause’ p (clause’ q x)
clause’ (Sym s) (c,a) = (insert s c , a)
clause’ (Not (Sym s)) (c,a) = (c , insert s a)

After encountering the non-exhaustive pattern match, the checker generates the
following constraints, usingC? as an abbreviation forC1+C2:

> clause’@1. * Dis ?{Dis,Sym,Not } ∧ clause’@1. * Dis ?.Not 1{Sym}
> clause@1. * Dis ?{Dis,Sym,Not } ∧ clause@1. * Dis ?.Not 1{Sym}
> unicl’@1. * Dis ?{Dis,Sym,Not } ∧ unicl’@1. * Dis ?.Not 1{Sym}
> foldr_unicl@2. * tail.head. * Dis ?{Dis,Sym,Not } ∧

foldr_unicl@2. * tail.head. * Dis ?.Not 1{Sym}
> unicl@1. * tail.head. * Dis ?{Dis,Sym,Not } ∧

unicl@1. * tail.head. * Dis ?.Not 1{Sym}

These constraints give accurate and precise requirements for a case error not to
occur at each stage, and are very useful. However, when the condition is propagated
back over thesplit function, the result becomes less pleasing. An error occurs
in fixed pointing, because no fixed pointing scheme matches the available function.
The original definition ofsplit :

split p = split’ p []
where

split’ (Con p q) a = split’ p (split’ q a)
split’ p a = p : a

can be transformed manually by the removal of the accumulator:

split (Con p q) = split p ++ split q
split p = [p]

This second version is accepted by the checker, which generates the constraint:

>
(

split@1. * Con?{Con,Dis,Sym,Not } ∧
split@1. * Con?.Dis ?. * Dis ?{Dis,Sym,Not } ∧
split@1. * Con?. * Dis ?.Not 1{Sym}

)

This constraint can be read as follows: the outer structure of a propositional
argument tosplit is any number of nestedCon constructors; the next level is
any number of nestedDis constructors; at the innermost level there must be either
aSym, or aNot containing aSym. That is, propositions are inconjunctive normal
form.

The one part of this constraint that may be unexpected is theDis ?. * Dis ?

part of the path in the 2nd conjunct. We might rather expect something similar
to * Con?. * Dis ?{Dis,Sym,Not }, but consider what this means. Take as an
example the value(Con Sym Sym) . This value meets all 3 conjunctions gen-
erated by the tool, but does not meet this new constraint: the path has the empty
word property, so the root of the value can no longer be aCon constructor.

The next function encountered isdisin which shifts disjunction inside con-
junction. The version in the nofib benchmark has following equation in its defini-
tion:

disin (Dis p q) =
if conjunct dp || conjunct dq
then disin (Dis dp dq)
else (Dis dp dq)

where
dp = disin p
dq = disin q

Unfortunately, when expanded out this gives the call

disin (Dis (disin p) (disin q))

which does not have a fixed point under the present scheme. Refactoring is required
to enable this stage to succeed. Fortunately, in [6] a new version ofdisin is
given, which is vastly more efficient than this one, and (as a happy side effect) is
also accepted by the checker.

At this point in the story a crisis occurs. Although a constraint is calculated
for the newdisin , this constraint is approximately 15 printed pages long! Initial
exploration suggests that there are missed opportunities to simplify regular expres-
sions.

7 RELATED WORK

7.1 Checking for exhaustiveness and usefulness

One way of alerting users to possible spurious pattern matches is by checking for
exhaustiveness and usefulness.

Example 12

notUseful (x:xs) = xs
notUseful [x] = []
notUseful [] = []

notExhaustive (Just x:xs) = [x]
notExhaustive [] = []

The first function has a redundant second equation – if the argument is of the form
[x] , then it would have already matched the first equation. Equations defining the
second function are not exhaustive: for example, if the argument is[Nothing]
an error occurs. ♦

When trying to compile these examples using GHC [7] 6.4, the first provokes
a warning, but the second does not. There is a compile time flag which can be
added and catches both, named-fwarn-incomplete-patterns . However,
the Bugs (12.2.1) section of the manual notes that the checks are sometimes wrong,
particularly with string patterns or guards, and that this part of the compiler “needs
an overhaul really” [7].

The unfortunate problem with these checks is that they are highly local. If the
functionhead is defined, then it raises a warning. No effort is made to check the
callersof head – this is an obligation left to the programmer.

7.2 Type Analysis for XML

There are similar problems involving XML [1] and XSLT [2]. XML is a hierar-
chical data structure, which can be though of as an algebraic data structure. XSLT
is a transformation language, with rules given to apply to various XML values. In
XSLT there is no destructive assignment, recursion is supported, a form of pattern
matching is used – overall it can be seen as a functional language.

A type specification of an XML document is written in a DTD (Document Type
Definition), and can express types such as a node of typehtml contains ahead
followed by abody . The paper [8] tackles a subset of XSLT named XSLT0. The
question the paper attempts to address is: Given a DTD for an output document,
and an XSLT0 transformation, what is the DTD for the input document?

The advantage of this knowledge is that a document can be checked to meet an
output DTD without the cost of transformation first, and the errors can be deter-
mined in the input (or source) document, which the user wrote – not a document
generated by a transformation.

The paper treats this as a question of backward type inference. A type is syn-
thesized as a finite tree automaton, and is deduced compositionally. Correctness
proofs are presented, along with an efficient algorithm for inference.

8 CONCLUSIONS AND FURTHER WORK

A static checker for potential pattern-match errors in Haskell has been specified
and implemented. This checker is capable of determining the preconditions under
which a program with non-exhaustive patterns executes without failing due to a
pattern-match error. A range of small examples has been investigated successfully,
along with some larger programs. Where programs cannot be checked initially,
refactoring can increase the checker’s success rate.

The checker relies on specialization to remove higher order functions. Where
higher order functions do remain, provided they do not have any pattern match
failures, the remaining part of the program can be checked.

The checker is fully polymorphic but it does not currently handle classes; we
hope these can be transformed away without vast complication.

The checker is a prototype only, and various enhancements could be made.

• The next challenge is to translate from full Haskell into the reduced lan-
guage. This work has been started: we have a converter for a useful subset.

• The checker should output fuller traces that can be manually verified. Cur-
rently the predicate at each stage is given, without any record of how it was
obtained, or what effect fixedpointing had.

• The central algorithms of the checker can be refined. A better fixed pointing
procedure could perhaps make additional use of backward analysis.

With these improvements we hope to check larger Haskell programs, and to
give useful feedback to the programmer.

ACKNOWLEDGEMENT

The first author is a PhD student supported by a studentship from the Engineering
and Physical Sciences Research Council of the UK.

REFERENCES

[1] T. Bray. Extensible Markup Language (XML) 1.0 (Third Edition).http://www.
w3.org/TR/2004/REC-xml-20040204/ , Feb. 2004.

[2] J. Clark. XSL Transformations (XSLT).http://www.w3.org/TR/xslt , Nov.
1999.

[3] J. H. Conway. Regular Algebra and Finite Machines. London Chapman and Hall,
1971.

[4] J. Hughes. Type Specialisation for the Lambda-calculus; or, A New Paradigm for
Partial Evaluation based on Type Inference. In O. Danvy, R. Glück, and P. Thiemann,
editors,Partial Evaluation, pages 183–215. Springer LNCS 1110, Feb. 1996.

[5] W. Partain. Thenofib Benchmark Suite of Haskell Programs. In J. Launchbury
and P. Sansom, editors,Functional Programming, Glasgow 1992, pages 195–202.
Springer-Verlag Workshops in Computing, 1992.

[6] C. Runciman and D. Wakeling. Heap Profiling of Lazy Functional Programs.Journal
of Functional Programming, 3(2):217–245, 1993.

[7] The GHC Team. The Glorious Glasgow Haskell Compilation System User’s
Guide, Version 6.4.http://www.haskell/org/ghc/docs/latest/html/
users guide , Mar. 2005.

[8] A. Tozawa. Towards Static Type Checking for XSLT. InDocEng ’01: Proceedings
of the 2001 ACM Symposium on Document engineering, pages 18–27, New York, NY,
USA, 2001. ACM Press.

[9] D. Turner. Total Functional Programming.Journal of Universal Computer Science,
10(7):751–768, July 2004.

