
c© ACM, 2010. This is the author’s version of the work. It is posted here by permission of ACM for your personal use.
Not for redistribution. The definitive version was published in the Proceedings of ICFP 2010,

ISBN 978-1-60558-794-3, (29 Sep 2010) http://doi.acm.org/10.1145/1863543.1863588

Rethinking Supercompilation

Neil Mitchell
ndmitchell@gmail.com

Abstract
Supercompilation is a program optimisation technique that is par-
ticularly effective at eliminating unnecessary overheads. We have
designed a new supercompiler, making many novel choices, includ-
ing different termination criteria and handling of let bindings. The
result is a supercompiler that focuses on simplicity, compiles pro-
grams quickly and optimises programs well. We have benchmarked
our supercompiler, with some programs running more than twice as
fast than when compiled with GHC.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages

General Terms Languages

Keywords Haskell, optimisation, supercompilation

1. Introduction
Consider a program that counts the number of words read from
the standard input – in Haskell (Peyton Jones 2003) this can be
compactly written as:

main = print ◦ length ◦ words =<< getContents

Reading the program right to left, we first read the standard
input as a string (getContents), then split it in to words (words),
count the number of words (length), and print the result (print).
An equivalent C program is unlikely to use such a high degree of
abstraction, and is more likely to get characters and operate on them
in a loop while updating some state.

Sadly, such a C program is three times faster, even using the
advanced optimising compiler GHC (The GHC Team 2009). The
abstractions that make the program concise have a significant run-
time cost. In a previous paper (Mitchell and Runciman 2008) we
showed how supercompilation can remove these abstractions, to
the stage where the Haskell version is faster than the C version (by
about 6%). In the Haskell program after optimisation, all the inter-
mediate lists have been removed, and the length◦words part of the
pipeline is translated into a state machine.

One informal description of supercompilation is that you sim-
ply “run the program at compile time”. This description leads to
two questions – what happens if you are blocked on information
only available at runtime, and how do you ensure termination? An-
swering these questions provides the design for a supercompiler.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’10, September 27–29, 2010, Baltimore, Maryland, USA.
Copyright c© 2010 ACM 978-1-60558-794-3/10/09. . . $10.00

1.1 Contributions
Our primary contribution is the design of a new supercompiler (§2).
Our supercompiler has many differences from previous supercom-
pilers (§5.1), including a new core language, a substantially dif-
ferent treatment of let expressions and entirely new termination
criteria. The result is a supercompiler with a number of desirable
properties:

Simple Our supercompiler is designed to be simple. From the
descriptions given in this paper a reader should be able to
write their own supercompiler. We have written a supercompiler
following our design which is available online1. Much of the
code (for example Figure 2) has been copied verbatim into
our implementation. The supercompiler can be implemented in
under 300 lines of Haskell.

Fast compilation Previous supercompilers have reported compi-
lation times of up to five minutes for small examples (Mitchell
and Runciman 2008). Our compilation times are under four sec-
onds, and there are many further compile time improvements
that could be made (§4.2).

Fast runtime We have benchmarked our supercompiler on a range
of small examples (§4). Some programs optimised with our
supercompiler, and then compiled with GHC, are more than
twice as fast than when compiled with GHC alone.

We give examples of how our supercompiler performs (§2.3.2),
including how it subsumes list fusion and specialisation (§3), and
what happens when the termination criteria are needed (§2.6.4).

2. Method
This section describes our supercompiler. We first present a Core
language (§2.1), along with simplification rules (§2.2). We then
present the overall algorithm (§2.3), which combines the answers
to the following questions:

• How do you evaluate an open term? (§2.4)
• What happens if you can’t evaluate an open term further? (§2.5)
• How do you know when to stop? (§2.6)
• What happens if you have to stop? (§2.6.3)

Throughout this section we use the following example:

root g f x = map g (map f x)

map f [] = []
map f (x : xs) = f x : map f xs

Our supercompiler always optimises the function named root.
The root function applies map twice – the expression map f x

1 http://hackage.haskell.org/package/supero

type Var = String -- variable/function names
type Con = String -- constructor names

data Exp = App Var [Var] -- function application
| Con Con [Var] -- constructor application
| Let [(Var, Exp)] Var -- let expression
| Case Var [(Pat, Exp)] -- case expression
| Lam Var Exp -- lambda expression

type Pat = Exp -- restricted to Con

Figure 1. Core Language

produces a list that is immediately consumed by map g. A good
supercompiler should remove the intermediate list.

2.1 Core Language
Our Core language for expressions is given in Figure 1, and has
much in common with Administrative Normal Form (Flanagan
et al. 1993). We make the following observations:

• We require variables in many places that would normally permit
expressions, including let bodies and application. A standard
Core language (such as from Tolmach (2001)) can be translated
to ours by inserting let expressions.

• Our let expression is non-recursive – bindings within a let
expression are bound in order. For example, we allow let x =
y; y = C in C but not let x = y; y = x in C.

• We don’t have default patterns in case expressions. These can be
added without great complexity, but are of little interest when
describing a supercompiler.

• We assume programs in our Core language are well-typed
using Hindley-Milner, in particular that we never over-apply
a constructor or perform case analysis on a function. While
most Haskell programs can be translated to our Core language,
the typing restriction means some features are not supported
(GADTs, existential types).

• Function application takes a list of arguments, rather than just
a single argument – the reasons are explained in §2.8.1. We use
an application with no arguments to represent just a variable.

• Variables may be either local (bound in an expression), or
global (bound in a top-level environment). We require that all
global variables occur as the first argument of App.

• When comparing expressions we always normalise local vari-
able names and the order of let bindings.

We define the arity of a variable to be the number of arguments
that need to be applied before reduction takes place. For our pur-
poses, it is important that for a variable with arity n, if less than n
arguments are applied, no evaluation occurs. We approximate the
arity of bound variables using the number of lambda arguments at
the root of their expression, for primitives we use a known arity
(e.g. integer addition has arity 2), and for all other variables we use
arity 0. In our example map has arity 2, root has arity 3, and f, g
and x have arity 0.

We write expressions using standard Haskell syntax (e.g. let for
Let, case for Case etc.). Rewriting the map/map example in our
Core language gives:

root = λg f x → let v1 = map f x
v2 = map g v1

in v2

map = λf x → case x of
[] → let v1 = []

in v1

y : ys → let v1 = f y
v2 = map f y
v3 = (:) v1 v2

in v3

Our Core language can be rather verbose, so we sometimes
use a superset of our Core language, assuming the expressions are
translated to our Core language when necessary. For example, we
might write map as:

map = λf x → case x of
[] → []
y : ys → f y : map f ys

2.2 Simplified Core
We now define a simplified form of our Core language. When work-
ing with Core expressions we assume they are always simplified,
and after constructing new expressions we always simplify them.
We require all expressions bound in the top-level environment con-
sist of a (possibly empty) sequence of lambda expressions, fol-
lowed by a let expression. We call the first let expression within
a top-level definition the root let.

Within a let we remove any bindings that are not used and
ensure all bound variables are unique. We also require that all
expressions bound at a let must not have the following form:

• App v [], where v is bound at this let – we can remove the
binding by inlining it.

• App v vs, where v is bound to a Con – the App can be replaced
with a Con of higher arity.

• App v vs, where v is bound to App w ws and the arity of w is
higher than the length of ws – the App can be replaced with an
App with more arguments.

• App v vs, where v is bound to a Lam – the App can be replaced
with the body of the lambda, with the first variable substituted.

• Case v w, where v is bound to a Con – the Case can be replaced
with the appropriate alternative.

• Let bs v – the bindings can be lifted into the let, renaming
variables if necessary.

As an example, we can simplify the following expression:

let v1 = f
v2 = Con x
v3 = v2 y
v4 = let w1 = y in v1 w1

v5 = case v3 of Con a b → v4 a
in v5

To give:

let v4 = f y
v5 = v4 x

in v5

If the arity of f was known to be 2, this would further simplify to:

let v5 = f y x
in v5

2.2.1 Simplifier Non-Termination
Sadly, not all expressions have a simplified form. Take the follow-
ing example:

type Env = Var → Maybe Exp
data Tree = Tree
{pre :: Exp, gen :: [Var] → Exp, children :: [Tree]}

manager :: Env → [(Var, Exp)]
manager env = assign (flatten (optimise env e))

where Just e = env "root"

optimise :: Env → Exp → Tree
optimise env = f []

where f h e | terminate (E) h e = g h e (stop h e)
| otherwise = g (e : h) e (reduce env e)

g h e (gen, cs) = Tree e gen (map (f h) cs)

reduce :: Env → Exp → ([Var] → Exp, [Exp])
reduce env = f []

where f h e = case step env e of
| terminate (C) h e → stop h e

Just e′ → f (e : h) e′

Nothing → split e

flatten :: Tree → [Tree]
flatten = nubBy (λt1 t2 → pre t1 ≡ pre t2) ◦ f []

where f seen t = if pre t ∈ seen then [] else
t : concatMap (f (pre t : seen)) (children t)

assign :: [Tree] → [(Var, Exp)]
assign ts = [(f t, gen t (map f (children t))) | t ← ts]

where f t = fromJust (lookup (pre t) names)
names = zip (map pre ts) functionNames

Figure 2. The manager function.

data U = MkU (U → Bool)
e = let f = λx → case x of MkU y → y x in f (MkU f)

This program encodes recursion via a data type, and any attempt
to apply all the simplification rules will not terminate. We are aware
of two solutions: 1) We could avoid performing case elimination on
contravariant data types (Peyton Jones and Marlow 2002); 2) We
could avoid simplifying certain expressions, using the size measure
from the HOSC supercompiler (Klyuchnikov 2010).

We have chosen to leave this problem unsolved. The problem
only occurs for contrived programs which encode recursion via a
data type, and it is a problem shared with GHC, which will also
non-terminate when compiling this example. The later stages of
our supercompiler do not rely on the simplifications having been
performed, so either solution could be applied in future.

2.3 Manager
Our supercompiler is based around a manager, that integrates the
answers to the questions of supercompilation. The manager itself
has two main purposes: to create recursive functions, and to ensure
termination (assuming the simplifier terminates). In our experience
the creation of recursive functions is often the most delicate part
of a supercompiler, so we deliberately include all the details. The
code for our manager is given in Figure 2, making use of a some
auxiliary functions whose types are given in Figure 3. We first give
an intuition for how the manager works, then describe each part.

Our supercompiler takes a source program, and generates a
target program. Functions in these programs are distinct – target
expressions cannot refer to source functions. The source and tar-

step :: Env → Exp → Maybe Exp -- §2.4
split :: Exp → ([Var] → Exp, [Exp]) -- §2.5

type History = [Exp]
(C), (E) :: Exp → Exp → Bool -- §2.6
terminate :: (Exp → Exp → Bool)

→ History → Exp → Bool -- §2.6
stop :: History → Exp → ([Var] → Exp, [Var]) -- §2.6.3

Figure 3. Auxiliary definitions for Figure 2.

get program are equivalent, but hopefully the target program runs
faster. We use the type Env to represent a mapping from source
function names to expressions, allowing a result of Nothing to in-
dicate a primitive function.

The manager first builds a tree (the type Tree), where each node
has a source expression (pre) and an equivalent target expression.
The target expression may call target functions, but these functions
do not yet have names. Therefore, we store target expressions
as a generator that when given the function names produces the
target expression (gen), and a list of trees for the functions it calls
(children). We then flatten this tree, ensuring identical functions
are only included once, and assign names to each node before
generating the target program. If a target function is recursive then
the initial tree will be infinite, but the flattened tree will always be
finite due to the termination scheme defined in §2.6.

manager: This function puts all the parts together. Reading from
right to left, we first generate a potentially infinite tree by optimis-
ing the expression bound to the function root, we then flatten the
tree to a finite number of functions, and finally assign names to
each of the result functions.

optimise: This function constructs the tree of result functions.
While the tree may be infinite, we demand that any infinite path
from the root must encounter the same pre value more than once.
We require that for any infinite sequence of distinct expressions h,
there must exist an i such that terminate (E) (take i h) (h !! i + 1)
returns True (where (!!) is the Haskell list indexing operator). If
we are forced to terminate we call stop, which splits the expression
into several subexpressions. We require that stop h only produces
subexpressions which pass the termination test, so that when f is
applied to the subexpressions they all call reduce. If the termination
criteria do not force us to stop, then we call reduce to evaluate the
expression.

reduce: This function optimises an expression by repeatedly eval-
uating it with calls to step. If we can’t evaluate any further we call
split. We use a local termination test to ensure the evaluation ter-
minates. We require that for any infinite sequence of expressions h,
there must exist an i such that terminate (C) (take i h) (h !! i + 1)
returns True. Note that this termination criteria is more restrictive
than that used by optimise.

flatten: This function takes a tree and extracts a finite number of
functions from it, assuming the termination restrictions given in
optimise. Our flatten function will only keep one tree associated
with each source expression. These trees may have different tar-
get expressions if one resulted from a call to stop, while another
resulted from a call to reduce – but all are semantically equivalent.

assign: This function assigns names to each target function, and
constructs the target expressions by calling gen. We assume the
function functionNames returns an infinite list of function names.

2.3.1 Notation
Values of type ([Var] → Exp, [Exp]) can be described by taking an
expression and removing some subexpressions (indicated by [[•]]).
The first component is a function to insert variables where subex-
pressions were removed, and the second component is a list of the
removed subexpressions. Before removing each subexpression, we
insert an applied lambda for all variables bound in the expression
but free in the subexpression. As an example:

λg f → map g ([[map f xs]])

We first insert a lambda for the variable f:

λg f → map g (([[λf → map f xs]]) f)

We then remove the subexpression. The first component of the re-
sult is a function that when given ["name"] returns the expression:

λg f → map g (name f)

And the second component is the singleton list containing the
expression:

λf → map f xs

2.3.2 Example
Revisiting our initial example, manager first calls optimise with:

λg f x → map g (map f x)

The termination history is empty, so we call reduce, which calls
step repeatedly until we reach the expression:

λg f x → let v = case w of
[] → []
y : ys → g y : map g ys

w = case x of
[] → []
z : zs → f z : map f zs

in v

The step function now returns Nothing, since we cannot eval-
uate further without the result of x. We therefore call split, which
results in (using the notation from §2.3.1):

λg f x → case x of
[] → [[let v = . . .; w = . . .; x = [] in v]]
z : zs → [[let v = . . .; w = . . .; x = z : zs in v]]

Looking at the first child expression, where x = [], the simpli-
fication rules from §2.2 immediately produce [] as the result. The
second child starts as:

λg f z zs →
let x = z : zs

w = case x of [] → []; z : zs → f z : map f zs
v = case w of [] → []; y : ys → g y : map g ys

in v

Which simplifies to:

λg f z zs → let y = f z
ys = map f zs
q = g y
qs = map g ys
v = q : qs

in v

Calling step produces Nothing, as the root of this expression is
a constructor (:) which can’t be evaluated. We therefore call split
which results in:

force :: Exp → Maybe Var
force (Case v) = Just v
force (App v) = Just v
force = Nothing

next :: Exp → Maybe Var
next (Lam x) = next x
next (Let bind v) = last (Nothing : f v)

where f v = case lookup v bind of
Nothing → []
Just e → Just v : maybe [] f (force e)

Figure 4. Function to determine the next evaluated binding.

λg f z zs → let q = [[g (f z)]]
qs = [[map g (map f zs)]]
v = q : qs

in v

When optimising g (f z) we get no optimisation, as there is
no available information. To optimise map g (map f zs) we
repeat the exact same steps we have already done. However, the
flatten function will spot that both Tree nodes have the same pre
expression (modulo variable renaming), and reduce them to one
node, creating a recursive function. We then assign names using
assign. For the purposes of display (not optimisation), we apply a
number of simplifications given in §2.7. The end result is:

root g f x = case x of
[] → []
z : zs → g (f z) : root g f zs

The final version has removed the intermediate list, with no
additional knowledge about the map function or its fusion rules.

2.4 Evaluation
Evaluation is based around the step function. Given an expression,
step either replaces a variable with its associated value from the
environment and returns Just, or if no suitable variable is found
returns Nothing. We always replace the variable that would be
evaluated next during normal evaluation.

To determine which variable would be evaluated next, we define
the functions force and next in Figure 4. The function force deter-
mines which variable will be evaluated next given an expression
– either a case scrutinee or an applied variable. The function next
determines which variable bound at the root let will be evaluated
next, by following the forced variables of the let bindings. Looking
at the original example:

λg f x → let v1 = map f x
v2 = map g v1

in v2

The function next returns Just v2. Calling force on the expres-
sion map g v1 returns map, but since map is not bound at the root
let we go no further. Therefore, to evaluate this expression we will
start by evaluating v2, and thus map. To perform an evaluation step
we insert a fresh variable w1 bound to the body of map, and replace
the map variable in v2 with w1. This transformation results in:

λg f x → let v1 = map f x
w1 = λf x → case x of

[] → []
y : ys → f y : map f ys

v2 = w1 g v1

in v2

Simplification immediately removes the lambda at w1, replacing
v2 with a case expression on v1.

More generally, we match any expression with the following
pattern:

λfree → let s = f w1 wn

v1 = e1

vn = en

in v
where Just e′ = env f

We use s to represent the next binding to be evaluated, as re-
turned by next. We allow any other variables v1 . . vn to be present,
bound to expressions e1 . . en. Given this configuration we can
rewrite to:

λfree → let s′ = e′

s = s′ w1 wn

v1 = e1

vn = en

in v

As always, after generating a new expression we immediately
apply the simplification rules (§2.2).

2.5 Evaluation Splitting
If evaluation cannot proceed, we split to produce a target expres-
sion, and a list of child expressions for further optimisation. When
splitting an expression there are three concerns:

Permit further optimisation: When we split, the current expres-
sion cannot be evaluated using the rules described in §2.4. We
therefore aim to place the construct blocking evaluation in the target
expression, allowing the child expressions to be optimised further.

No unbounded loss of sharing: An expensive variable binding
cannot be duplicated in a way that causes it to be evaluated multiple
times at runtime. The target program cannot remove sharing present
in the source program, or it would run slower.

Keep bindings together: If we split variables bound at the same
let expression into separate child expressions, we reduce the poten-
tial for optimisation. If the expression associated with a variable is
not available when evaluating, the evaluation will be forced to stop
sooner. We aim to make child expressions as large as possible, but
without losing sharing.

We split in one of three different ways, depending on the type of
the next expression to be evaluated (as described in §2.4). We now
describe each of the three ways to split, in each case we start with
an example, then define the general rule. We use the [[•]] notation
described in §2.3.1.

2.5.1 Case Expression
If the next expression is a case expression then we make the target
a similar case expression, and under each alternative we create a
child expression with the case scrutinee bound to the appropriate
pattern. For example, given:

λx → let v = case x of
[] → []
y : ys → add y ys

in v

We split to produce:

λx → case x of
[] → [[let x = []

v = case x of [] → []; y : ys → add y ys
in v]]

y : ys → [[let x = y : ys
v = case x of [] → []; y : ys → add y ys

in v]]

Looking more closely at the second child, we start with the
expression:

λy ys → let x = y : ys
v = case x of [] → []; y : ys → add y ys

in v

This expression immediately simplifies to:

λy ys → let v = add y ys
in v

More generally, if s is the next expression to evaluate:

λfree → let s = case x of p1 → e′1; pm → e′m
v1 = e1

vn = en

in v

After split it becomes:

λfree → case x of
p1 → [[let x = p1

s = e′1
v1 = e1

vn = en

in v]]
pm → [[let x = pm

s = e′m
v1 = e1

vn = en

in v]]

2.5.2 Lambda
If the next binding to be evaluated is a lambda, then we place
a lambda in the target program. The key point when splitting a
lambda is that we do not reduce sharing. Consider the following
example:

λx → let v1 = f x
v2 = expensive v1

s = λy → add v2 y
in s

The add function takes two arguments, but only has one so far.
We cannot move the argument y upwards to form λx y → . . ., as
this action potentially duplicates the expensive computation of v2.
Instead, we create child expressions for every variable binding, and
for the body of the lambda:

λx → let v1 = [[f x]]
v2 = [[expensive v1]]
s = λy → [[add v2 y]]

in s

Unfortunately, we have now split the bindings for v1 and v2

apart, when there is no real need. We therefore move binding v1

under v2, because it is only referred to by v2, to give:

λx → let v2 = [[let v1 = f x in expensive v1]]
s = λy → [[add v2 y]]

in s

We will now optimise the body of v2, and the body of the
lambda, which will be able to evaluate add. More generally, given:

λfree → let s = λx → e′

v1 = e1

vn = en

in v

We rewrite:

λfree → let s = λx → [[e′]]
v1 = [[e1]]
vn = [[en]]

in v

We then repeatedly move any binding vi under vj if either: 1) vi

is only used within the body of vj; or 2) the expression bound to vi

is cheap. We define an expression to be cheap if it is a constructor,
or an application to a variable v with fewer arguments than the arity
of v (a partial application). The intention of moving bindings is to
increase sharing, which can be done provided we don’t duplicate
work (condition 1), or if the work duplicated is bounded (condition
2).

2.5.3 Anything Else
The final rule applies if the next expression is not a case expression
or a lambda, including a constructor, a variable, and an application
of a variable not bound in the environment. We do not deal with
variables bound in the environment, as these are handled by step.
Given the example:

λx y → let v1 = expensive x
v2 = v1 x
v3 = Con v2 y v2

in v3

We turn each binding into a child, apart from the next binding to be
evaluated:

λx y → let v1 = [[expensive x]]
v2 = [[v1 x]]
v3 = Con v2 y v2

in v3

We then perform the same sharing transformation as for lambda
expressions, noting that v1 is only used within v2, to give:

λx y → let v2 = [[let v1 = expensive x in v1 x]]
v3 = Con v2 x v2

in v3

More generally, given an expression:

λfree → let s = e′

v1 = e1

vn = en

in v

We rewrite to:

λfree → let s = e′

v1 = [[e1]]
vn = [[en]]

in v

We then repeatedly move any binding vi under vj according to
the criteria given in §2.5.2.

2.6 Termination
The termination rule is responsible for ensuring that whenever we
proceed along a list of expressions we eventually stop. The intuition
is that each expression has a set of bindings at the root let, and each
of these bindings has a name indicating where it came from in the

source program. Compared to all earlier expressions in a list, each
root let must contain either different names, or fewer names.

In this section we first describe the terminate, C and E func-
tions from a mathematical perspective, then how we apply these
functions to expressions. Finally, we show an example of how these
rules ensure termination.

2.6.1 Termination Rule
Our termination rules are defined over bags (also known as mul-
tisets) of values drawn from a finite alphabet Σ. A bag of values
is unordered, but may contain elements more than once. We define
our rules as:

x C y = set(x) 6≡ set(y) ∨ #x < #y

x E y = x ≡ y ∨ x C y

We use set(x) to transform a bag to a set, and # as the cardi-
nality operator to take the number of elements in a bag. A sequence
x1 . . . xn is well-formed under C if for all indices i < j ⇒ xj Cxi

(and respectively for E).
The following sequences are well-formed under both E and C:

[a, aaaaab, aaabb, b]
[abc, ab, accc, a]
[aaaaabbb, aaab, aab]

The following sequences are well-formed under E, but not
under C:

[aaa, aaa]
[aabb, ab, ab]

The following sequences are not well-formed under E or C:

[abc, abcc]
[aa, aaa]

We define the terminate function referred to in Figure 3 as:

terminate :: (Exp → Exp → Bool) → History → Exp → Bool
terminate (<) h e = not (all (e<) h)

The terminate function returns False if given a well-formed
sequence (h), adding the expression e will keep the sequence well-
formed.

Lemma: Any well-formed sequence under C is finite
Given a finite alphabet Σ, any well-formed sequence under C is fi-
nite. Consider a well-formed sequence x1 We can partition this
sequence into at most 2Σ subsequences using set equality. Consider
any subsequence y1 For any two elements in this subsequence,
set(yi) 6≡ set(yj) will be false, due to the partitioning. There-
fore, for the sequence to be well-formed, i < j ⇒ #yj < #yi.
Therefore there can be at most #y1 + 1 elements in any particular
subsequence. Combined with a finite number of subsequences, we
conclude that any well-formed sequence is finite.

Lemma: Any well-formed sequence under E has a finite number
of distinct elements.
Given a finite alphabet Σ, any well-formed sequence under E
has a finite number of distinct elements. For a sequence to be
well-formed under E but not C it must have elements which are
duplicates. If we remove all duplicates we end up with a well-
formed sequenced under C, which must be finite. Therefore there
must be a finite number of distinct elements.

2.6.2 Tracking Names
Every expression in the source program is assigned a name. A name
is a triple, 〈f , e, a〉 where f is a function name, e is an expression
index and a is an argument count. We label every expression in

the source program with f being the function it comes from and e
being a unique index within that function. The argument count a
for constructors and applications is the number of arguments, and
for all other expressions is 0. When manipulating expressions, we
track names:

• When renaming a bound variable, or substituting one variable
for another, we do not change any names.

• If we move a subexpression, we keep the name already assigned
to that subexpression.

• If we increase the number of arguments to an application or
constructor, we increase the argument count of that expression.
For example, let v = C x; w = v y in w being transformed to
let w = C x y in w would have the new name for w set to the
old name of v, but with an argument count of 2 instead of 1.

• When splitting on a case we introduce a new constructor (see
§2.5.1), for this constructor we use the name assigned to the
pattern from the case alternative.

We map an expression to a bag of names by taking the names of
all expressions bound at the root let.

Lemma: For any source program, there are a finite number of
names
All subexpressions are assigned expression indices in advance, so
there are only a finite number of function name/index values. We
only increase the argument count when increasing the number of
arguments applied to a constructor or application, which is bounded
by the arity of that constructor or the source function. Therefore,
there are only a finite number of names.

Lemma: A bag of names represents a finite number of
expressions
Given a bag of names, there are only a finite number of expressions
that could have generated it. We first assume that when simplifying
an expression we always normalise the free variables – naming the
let body v1, and naming all other variables as they are reached from
v1. Each name refers to one particular subexpression, but may have
different variable names. A finite number of subexpressions can
only be combined to produce a finite number of expressions, if we
ignore variable names, which the normalisation handles.

Lemma: The termination properties required by §2.3 are satisfied
The termination properties in §2.3 are satisfied by the lemmas in
this section. We have shown that the alphabet of names, Σ, is finite.
For terminate (E) we have shown that there can only be a finite
number of distinct name bags, and that each name bag can only
correspond to a finite number of expressions, therefore there are a
finite number of distinct expressions. For terminate (C) we have
shown that there can only be a finite number of name bags.

2.6.3 Termination Splitting
If we are forced to terminate we call stop, which splits the ex-
pression into several subexpressions. We require that stop h e
only produces subexpressions which are not forced to terminate by
terminate (E) h. We trivially satisfy this requirement by using the
termination criteria when defining stop.

Given an expression:

λfree → let v1 = e1

vn = en

in v

We first split every variable bound at the let, to give:

λfree → let v1 = [[e1]]
vn = [[en]]

in v

We now move variable vi under vj using the same conditions as
split, described in §2.5.2. In addition, we do not merge vi under vj if
the resulting expression bound to vj would violate the termination
criteria terminate (E) h. Combined with with the property that
all initial children are singleton name bags, which trivially satisfy
E for any expression, our merge restriction ensures no children
violate the termination criteria.

As a heuristic, we attempt to move variable v before w if the
name associated with v occurs fewer times in the original expres-
sion. In most expressions that are growing, and therefore hit the
termination criteria, there will be some name that keeps repeating.
By favouring less frequent names we hope to keep together subex-
pressions that are not growing. This heuristic has no effect on the
correctness or termination, but sometimes gives better optimisation.

2.6.4 Example
Many simple example programs (such as map/map) never trigger
the termination criteria. The standard example of a function that
does require termination is reverse, which can be written in a
simplified form as:

root xs = rev [] xs
rev acc xs = case xs of

[] → acc
y : ys → rev (y : acc) ys

The rev function builds up an accumulator argument, which
will be equal to the size of xs. To specialise on the accumulator
argument would require an infinite number of specialisations. To
supercompile this program, the optimise function starts with an
empty termination history and the expression rev [] xs, and calls
reduce, resulting in:

λxs → case xs of
[] → [[[]]]
y : ys → [[rev (y : []) ys]]

Focusing on the second alternative, we now add rev [] xs to the
termination history, and continue optimising rev (y : []) ys. This
leads to the sequence of expressions:

λx1 → rev [] x1

λx1 x2 → rev (x1 : []) x2

λx1 x2 x3 → rev (x1 : x2 : []) x3

. . .

We can rewrite these expressions in our core language, with
annotations for names:

λx1 →
let v1 = 〈root, 2, 0〉 []

v2 = 〈root, 1, 0〉 rev v1 x1

in v2

λx1 x2 →
let v1 = 〈root, 2, 0〉 []

v2 = 〈rev , 2, 0〉 x1 : v1

v3 = 〈rev , 1, 0〉 rev v2 x2

in v1

λx1 x2 x3 →
let v1 = 〈root, 2, 0〉 []

v2 = 〈rev , 2, 0〉 x2 : v1

v3 = 〈rev , 2, 0〉 x1 : v2

v4 = 〈rev , 1, 0〉 rev v3 x3

in v1

Under E the first two expressions create a well-formed se-
quence, but the first three expressions do not. The first expression
is permitted because the history is empty. The second expression is
permitted because it has a different set of names from the first. The
third expression has the same set of names as the second, and has a
higher cardinality. Therefore, when optimising, we call stop on the
third expression. After calling stop we get:

λx1 x2 x3 →
let v2 = [[let v1 = 〈root, 2, 0〉 []

v2 = 〈rev , 2, 0〉 x2 : v1

in v2]]
v4 = [[let v3 = 〈rev , 2, 0〉 x1 : v2

v4 = 〈rev , 1, 0〉 rev v3 x3

in v4]]
in v1

Part of the accumulator has been bound to v2, and separated
from the main expression. Continuing to optimise we get the se-
quence:

λx1 → rev [] x1 -- reduce
λx1 x2 → rev (x1 : []) x2 -- reduce
λx1 x2 x3 → rev (x1 : x2 : []) x3 -- stop
λx1 x2 x3 → rev (x1 : x2) x3 -- reduce
λx1 x2 x3 x4 → rev (x1 : x2 : x3) x4 -- stop
λx1 x2 x3 → rev (x1 : x2) x3 -- reduce
. . . -- repeat the last 2 lines

As required, we have a finite number of distinct expressions,
and end up with a recursive function in the target program.

2.7 Post-processing
Our split function is structured to produce only one simple expres-
sion per target function – for example a target function will never
contain two constructors. While most opportunities to remove in-
termediate structure have been exploited, the target program will
usually contain lots of small functions. We can eliminate many of
these functions by inlining all functions which are only called once.
For example, given the source program:

root x = x : x : []

After supercompilation, we get the target program:

root x = x : f x
f x = x : nil
nil = []

We can then inline all functions that are only called once:

root x = x : x : []

It is important that the only optimisation intended from this
post-processing is the reduction of function call overhead. This use
of inlining is substantially different from other compilers (Peyton
Jones and Marlow 2002), where inlining is used to bring expres-
sions together to trigger other optimisations.

2.8 Alternative Designs
In this section we describe some possible design alternatives for
our supercompiler.

2.8.1 Binary Application
The first version of this supercompiler had binary application,
rather than vector application. The App Var [Var] constructor
was replaced by a combination of Var Var and App Var Var. The
reason for originally choosing binary application is that it is closer
to other Core languages, and the simplification does not need to

track arity information. There were three main reasons for moving
to vector application:

• Vector application simplifies splitting with primitive functions,
by providing the arity information directly.

• Vector application makes it easier to identify partial applica-
tions when increasing sharing (see §2.5.2).

• Vector application reduces the number of names in an expres-
sion, improving the time taken to compile.

2.8.2 Alternative Termination Orderings
Our original termination rule was:

x C y = x ⊃set y ∨ x ⊂bag y

Both this rule and the one described in §2.6.1 can be proved us-
ing the same argument. We switched to use our new rule because
it is simpler, follows more directly from the proof, and can be im-
plemented very efficiently. Choosing a termination rule is a tricky
business – no termination rule can be the best for all programs, so
there is always scope for experimentation.

2.8.3 Recursive Lets
Our Core language does not include recursive lets. Recursive lets
bound to functions can be efficiently removed using lambda-lifting
(Johnsson 1985). Recursive lets bound to values can be removed,
but doing so may cause the program to run arbitrarily slower
(Mitchell 2008). Alternatively, we can take functions with value
recursive lets and make them primitives, losing optimisation po-
tential, but preserving complexity. In practice, the most common
function with a value recursive let is repeat, and our supercompiler
is nearly always able to fuse away the list generated by repeat.

2.8.4 Common Subexpression Elimination
Common Subexpression Elimination (CSE) involves detecting
when a program will compute two identical expressions, and re-
ducing them both to a single shared expression. Our Core language
is well suited to CSE – two variables can be merged if they have the
same bound expression. The advantage of CSE is that performance
can be increased, sometimes asymptotically. The disadvantages are
that CSE can introduce space leaks (Chitil 1998), and the additional
sharing may stop variables from being moved when splitting. We
have not investigated the performance impact of CSE on supercom-
pilation, but think it is a worthwhile area for future research.

2.8.5 Inlining Simple Functions
The GHC compiler inlines many non-recursive functions during
the simplification phase (Peyton Jones and Marlow 2002). It is cer-
tainly possible that our simplification rules could be extended to
inline some functions, such as id, provided no new names were
introduced (and thus termination was unaffected). Another alter-
native would be to inline simple functions in the source program
before supercompilation started (such as otherwise and (◦)). The
primary motivation for inlining simple functions would be to re-
duce the complexity of the main supercompilation phase, and avoid
inopportune termination splits. We have deliberately not performed
any inlining other than in the step function, as there is a risk that
doing so would hide weaknesses in our supercompiler. However,
we think simple inlining would be worth investigating.

3. Comparison to Other Optimisations
Supercompilation naturally subsumes many other optimisations,
including constructor specialisation (Peyton Jones 2007) and defor-
estation (Gill et al. 1993; Wadler 1990). However, there are some
optimisations that supercompilation (in the form presented here)

does not address – in particular strictness analysis and unboxing
(Peyton Jones and Launchbury 1991), and the generation of native
code. In order to benefit from these optimisations we use GHC to
compile the resulting Core after supercompilation (The GHC Team
2009).

We now give an example where our supercompiler massively
outperforms GHC, and discuss the optimisations being performed.
Our example is:

root n = map square (iterate (+1) 1) !! n
where square x = x ∗ x

Running this program with n = 400000, GHC takes 0.149 sec-
onds, while our supercompiler combined with GHC takes 0.011
seconds. Running for larger values of n is infeasible as the GHC
only variant overflows the stack. After optimising with our super-
compiler, then compiling with GHC, the resulting inner-loop is:

go :: Int# → Int# → Int #
go x y = case x of

0 → y ∗ y
→ go (x− 1) (y + 1)

All the intermediate lists have been removed, there are no func-
tional values, all the numbers have been unboxed and all arithmetic
is performed on unboxed values (GHC uses Int# as the type of
unboxed integers). Supercompilation has fused all the intermedi-
ate lists and specialised all functional arguments, leaving GHC to
perform strictness analysis and unboxing.

The program compiled with GHC alone is much less efficient.
GHC uses programmer supplied rewrite rules to eliminate interme-
diate lists (Peyton Jones et al. 2001), which fuses the map/iterate
combination. Unfortunately, GHC does not contain a rule to fuse
the input list to the (!!) operator. The GHC rules match specific
function names in the source program, meaning that redefining
map locally would inhibit the fusion. In contrast, our supercompiler
does not rely on rules so is able to fuse the functions regardless of
their names, and is able to perform fusion on data types other than
lists.

GHC specialises the resulting map/iterate combination with the
square function, but fails to specialise with increment – passing
(+1) as a higher-order function. GHC can specialise functions
to particular data values using constructor specialisation, but does
not currently do the same transformation for functional arguments.
To allow specialisation, some functions are written in a particular
style:

foldr f z xs = go xs
where go [] = z

go (y : ys) = f y (go ys)

In this definition, provided lambda-lifting is not performed, the
function foldr is considered non-recursive. GHC can inline non-
recursive functions, allowing the definition of foldr to be replicated
in an expression where f is known, eliminating the functional ar-
gument. In contrast, our supercompiler has specialised all the func-
tions to their functional arguments, even when written in a natural
style.

GHC fails to eliminate all the lists and higher-order functions,
which in turn means the integers are not detected as strict, and
are not unboxed. In contrast, our supercompiler has reduced the
program sufficiently for everything to be unboxed.

4. Benchmarks
In this section we run our supercompiler over a range of bench-
marks drawn from other papers. The results are given in Table 1.
The benchmarks we use are:

Program Lines Compile time Runtime Memory Size
append 8 0.1 + 0.6 0.85 0.84 1.00
bernouilli 148 2.4 + 1.3 1.04 0.96 1.02
charcount 32 0.1 + 0.6 0.14 0.01 0.99
digits-of-e2 100 2.0 + 0.8 0.40 0.45 0.99
exp3 8 39 0.5 + 0.8 0.93 1.00 1.08
factorial 12 0.1 + 0.6 0.98 1.00 1.00
linecount 43 0.2 + 0.6 0.01 0.01 0.98
primes 58 0.1 + 0.6 0.58 0.81 0.99
raytracer 26 0.1 + 0.6 0.56 0.44 1.00
rfib 16 0.1 + 0.7 0.77 1.01 0.98
sumsquare 45 1.2 + 0.9 0.38 0.23 1.03
sumtree 27 0.1 + 0.6 0.14 0.01 1.00
tak 19 0.1 + 0.6 0.79 1.01 0.98
treeflip 26 0.1 + 0.6 0.57 0.45 1.01
wordcount 62 0.3 + 0.7 0.19 0.30 1.00
x2n1 36 0.1 + 0.8 0.90 0.99 1.00

Program is the name of the program as given in §4. Lines
is the number of lines of code in the original program, including
library definitions, but excluding primitives. Compile time is the
number of seconds to compile the program (a + b), including
both compilation with our supercompiler (a) and the subsequent
compilation with GHC (b). The final three columns are relative to
ghc -O2 being 1.00, with a lower number being better. Runtime
is how long the optimised program takes to run. Memory is the
amount of memory allocated on the heap. Size is the size of the
optimised program on disk.

Table 1. Benchmark results.

• sumsquare is the introductory example used in the stream fusion
paper (Coutts et al. 2007).

• charcount, linecount and wordcount are taken from our previous
supercompiler work (Mitchell and Runciman 2008), and word-
count is used as the example in §1. For the purpose of bench-
marking, we have removed the actual IO operations, leaving
just the actual computation.

• append, factorial, treeflip, sumtree and raytracer have been used
to benchmark other supercompilers (Jonsson and Nordlander
2009), and originate from papers on deforestation (Kort 1996;
Wadler 1990).

• bernouilli, digits-of-e2, exp3 8, primes, rfib, tak and x2n1 are
all taken from the Imaginary section of the nofib benchmark
suite (Partain et al. 2008).

We have manually translated all the examples from their source
language to our Core language. We have taken care to ensure that
we have not simplified the programs in translation – in particular
we have inserted explicit dictionaries for all examples that require
type classes (Wadler and Blott 1989), and have translated list-
comprehensions to concatMap as described by the Haskell report
(Peyton Jones 2003).

For comparison purposes we compiled all the benchmarks with
GHC 6.12.1 (The GHC Team 2009), using the -O2 optimisation
setting. For the supercompiled results we first ran our supercom-
piler, then compiled the result using GHC. To run the benchmarks
we used a 32bit Windows machine with a 2.5GHz processor and
4Gb of RAM.

4.1 Comparison to GHC
The benchmarks are nearly all faster than GHC, with some pro-
grams running substantially faster than GHC alone. The improve-
ment in speed is usually accompanied by either a similar memory
usage, or a substantial reduction. The resulting executables are all

very close in size to compilation with GHC alone – partly because
the run-time system accounts for a substantial proportion of the ex-
ecutable size.

Numerical Computation Some of the benchmarks mainly test
numerical performance – for example factorial, x2n1 and tak. In
these benchmarks we have been able to inline some of the func-
tions even though they are recursive, which has been equivalent to
a small amount of loop unrolling, and has sometimes improved ex-
ecution speed.

Complete Elimination Some of the benchmarks allow us to com-
pletely eliminate most intermediate values – for example char-
count, sumtree and raytracer. In these cases the execution time and
memory are both substantially reduced. Most of these benchmarks
have previously been used to test supercompilers, and our super-
compiler performs the same optimisations.

Partial Elimination Some of the benchmarks have a combination
of data structures and numerical computation – for example primes,
digits-of-e2 and exp3 8. In these benchmarks we perform speciali-
sation, and remove some intermediate values, but due to the nature
of the benchmarks not all intermediate values can be eliminated.
In digits-of-e2 we are able to fuse long pipelines of list fusions. In
exp3 8 most of our performance increase comes from eliminating
intermediate values of the data type data Nat = Z | S Nat.

Bernouilli The benchmark on which we do worst is bernouilli.
The bernouilli program seems reasonably similar in terms of list
operations to other benchmarks such as primes, but our supercom-
piler is unable to outperform GHC – the exact reasons are still un-
clear. Interestingly, both our previous supercompiler and the stream
fusion work also failed to outperform GHC on this benchmark, so
the reason may be that GHC does a particularly good job on this
benchmark.

4.2 Compilation Speed
In the benchmarks presented, our supercompiler always takes under
four seconds to compile. We have given the compilation times as
two figures – the time taken to run the supercompiler, followed
by the time taken to compile the result with GHC. In all cases,
the resulting GHC compilation time is dominated by the linker.
Compared to our previous supercompiler, where compile times
ranged from a few seconds to five minutes, our new supercompiler
is substantially faster.

While we have designed our supercompiler with compilation
speed in mind, we haven’t focused on optimising the compiler – all
functions are implemented as simply as possible. Profiling shows
that 80% of the compilation time is spent simplifying expressions,
as described in §2.2. Our simplification method is currently written
as a transformation that is applied until a fixed point is reached – we
believe the simplification can be implemented in one pass, leading
to a substantial reduction in compile time.

We have implemented the termination check exactly as de-
scribed in §2.6.1, traversing and comparing the entire history at
each step. For our termination check it is simple to change the his-
tory to a mapping from a name bag to an integer (being the highest
permitted cardinality) – reducing the algorithmic complexity. We
could also optimise the representation of names, using a single in-
teger for both the function name and subexpression index.

5. Related Work
We first describe related work in the area of supercompilation, par-
ticularly what makes our supercompiler unique. We then describe
some work from other areas, particularly work from which we have
used ideas.

5.1 Supercompilation
Supercompilation was introduced by Turchin (1986) for the Refal
programming language (Turchin 1989). Since this original work,
there have been many suggestions of both termination strategies
and generalisation/splitting strategies (Leuschel 2002; Sørensen
and Glück 1995; Turchin 1988). The original supercompiler main-
tained both positive and negative knowledge (Secher and Sørensen
2000), however our implementation uses only positive knowledge
(what a variable is, rather than what it cannot be). More recently, su-
percompilation has started to converge towards a common design,
described in detail by Klyuchnikov (2009), but which has much in
common with the underlying design present in other papers (Jons-
son and Nordlander 2009; Mitchell and Runciman 2008).

Compared to an increasingly common foundation, our super-
compiler is radically different. We have changed many of the in-
gredients of supercompilation (the treatment of let, termination cri-
teria, how the termination histories are used), but have also changed
the way these ingredients are combined (the manager). In particu-
lar, many of our choices would not work if applied in isolation to
another supercompiler – for example the termination criteria relies
on the treatment of let.

5.1.1 Let Expressions
Compared to other supercompilers, our Core language requires
many more let expressions. Previous supercompilation work has
tended to ignore let expressions – if let is mentioned the usual
strategy is to substitute all linear lets and residuate all others. At
the same time, movement of lets can have a dramatic impact on
performance: carefully designed let-shifting transformations give
an average speedup of 15% in GHC (Peyton Jones et al. 1996).

Our previous work inlined all let bindings that it could show
did not lead to a loss of sharing (Mitchell and Runciman 2008).
Unfortunately, where a let could not be removed, there was a
substantial performance penalty. By going to the opposite extreme
we are forced to deal with let bindings properly, making our new
supercompiler both simpler and more robust.

5.1.2 Termination Criteria
The standard termination criteria used by supercompilers is the
homeomorphic embedding (Leuschel 2002). The homeomorphic
embedding is a well-quasi ordering, from Kruskal’s Tree Theo-
rem (Kruskal 1960). The criteria requires that for every infinite se-
quence e1, e2 . . . there exist indicies i < j such that ej 6 ei. The
intuition of homeomorphic embedding is that x 6 y holds if by
removing nodes from y you cannot obtain x. Our termination rule
uses similar ideas to a well-quasi ordering, but with a very different
comparison relation.

We are unaware of any other supercompilers that have assigned
names to expressions, or that have used a bag based termination
rule (most use tree orderings, or sometimes cost models/budgets).
Without our particular treatment of expressions as a set of let
bindings, and our particular simplification rules, it is not possible
to use our termination rule. For example, if we ever inline let
bindings then subexpressions would be changed internally, and a
single name for each subexpression would no longer be sufficient.

In some cases, our rule is certainly less restrictive than the
homeomorphic embedding. The example in §2.6.4 would have
stopped one step earlier with a homeomorphic embedding. Under a
fairly standard interpretation of variable names and let expressions,
we can show that our rule is always less restrictive than the home-
omorphic embedding – although other differences in our treatment
of expressions mean such a comparison is not necessarily meaning-
ful. However, we did not choose our termination criteria to permit
more expressions – it was chosen for both simplicity and compila-
tion speed.

We use two separate termination histories, one in reduce and
another in optimise – an idea suggested by Mitchell (2008), but not
previously implemented. By separating the termination histories
we gain better predictability, as reduce is not dependent on which
functions have gone before. Additionally, the histories are kept sub-
stantially smaller, again improving compile-time performance. By
splitting termination checks we also reduce the coupling between
the separate aspects of supercompilation, allowing us to present a
simpler manager than would otherwise be possible.

As a result of the changes to termination and the Core language,
the operation for splitting when the termination check fails is radi-
cally different. In particular, we can use almost identical operations
when either evaluation fails to continue, or the termination check
fails.

5.2 Partial evaluation
There has been a lot of work on partial evaluation (Jones et al.
1993), where a program is specialised with respect to some static
data. Partial evaluation works by marking all variable bindings
within a program as either static or dynamic, using binding time
analysis, then specialises the program with respect to the static
bindings. Partial evaluation is particularly appropriate for optimis-
ing an interpreter with respect to the expression tree of a particular
program, automatically generating a compiler, and removing inter-
pretation overhead. The translation of an interpreter into a com-
piler is known as the First Futamura Projection (Futamura 1999),
and can often give an order of magnitude speedup.

Supercompilation and partial evaluation both remove abstrac-
tion overhead within a program. Partial evaluation is more suited to
completely removing static data, such as an expression tree which
is interpreted. Supercompilation is able to remove intermediate data
structures, which partial evaluation cannot usually do.

5.3 Deforestation
Deforestation (Wadler 1990) removes intermediate trees (most
commonly lists) from computations. This technique has been ex-
tended in many ways, including to encompass higher-order defor-
estation (Marlow 1996). In many cases the gains from supercompi-
lation are just particular forms of deforestation.

Probably the most practically applied work on deforestation
uses GHC’s rewrite rules to optimise programs (Peyton Jones et al.
2001). Shortcut deforestation rewrites many definitions in terms
of foldr and build, then combines foldr/build pairs (Gill et al.
1993) to deforest lists. Stream fusion works similarly, but relies
on stream/unstream rules (Coutts et al. 2007). All these schemes
are only able to optimise functions written in terms of the correct
primitives, which have had fusion rules defined. The advantage of
supercompilation is that it applies to many types and functions,
without any special effort from the program author.

5.4 Lower Level Optimisations
Our optimisation works at the Core level, but even once efficient
Core has been generated there is still some work before efficient
machine code can be produced. Key optimisations include strict-
ness analysis and unboxing (Peyton Jones and Launchbury 1991).
In GHC both of these optimisations are done at the core level, using
a core language extended with unboxed types. After this lower level
core has been generated, it is then compiled to STG machine in-
structions (Peyton Jones 1992), from which assembly code is gen-
erated. There is still work being done to modify the lowest levels to
take advantage of the current generation of microprocessors (Mar-
low et al. 2007). We rely on GHC to perform all these optimisations
after our supercompiler generates a target program.

The GRIN approach (Boquist and Johnsson 1996) uses whole
program compilation for Haskell. It is currently being implemented

in the jhc compiler (Meacham 2008), with promising initial results.
GRIN works by first removing all functional values, turning them
into case expressions, allowing subsequent optimisation. The inter-
mediate language for jhc is at a much lower level than our Core
language, so jhc is able to perform detailed optimisations that we
are unable to express.

6. Conclusions and Future Work
We have described a novel supercompiler, with a focus on sim-
plicity, which can compile our benchmarks in a few seconds, and
in some benchmarks offers substantial performance improvements
over GHC alone. We see two main avenues for future work: in-
creasing the range of benchmarks, and improving the runtime per-
formance.

6.1 More Benchmarks
In order to run more benchmarks we need to automatically trans-
late Haskell to our Core language. In previous papers we used the
Yhc compiler to generate Core (Golubovsky et al. 2007), but sadly
Yhc is not maintained and no longer works. Given that our super-
compiler relies on GHC to perform strictness analysis and generate
native code, it seems sensible to use GHC to generate our Core
language – perhaps as a compiler plug-in, or working on external
Core, or integrated into the compiler.

Our supercompiler processes the whole program in one go,
which naturally leads to questions of scalability. In the tests we
have run we have not had a problem with compilation time, but
it is something to be aware of as benchmarks increase in size.
We believe that our supercompiler could be sped up massively,
using some of the techniques mentioned in §4.2. In addition, we
could split programs into separate components by defining some
functions to be primitive – although this will remove optimisation
potential.

6.2 Runtime Performance
Our performance results are good, but there are always opportu-
nities to improve. We currently rely on GHC’s strictness analysis
to run after we have optimised the program, but by integrating a
strictness analysis we may be able to do better. The most common
uses of GHC’s rules engine, particularly list/stream fusion, are au-
tomatically performed by our supercompiler. However, some trans-
formations such as replacing head ◦ sort with minimum, are too
complex to automatically infer. It may be of benefit to integrate a
rules engine in to our supercompiler.

In some cases the author of a program has a particular idea about
some intermediate data structure they expect to be eliminated. If
these structures remain in the optimised program the performance
penalty is sometimes dramatic. Perhaps a user could mark some
values they expect to be removed, and then be warned if they
remain.

6.3 Conclusions
Supercompilation is a powerful technique which generalises many
of the transformations performed by optimising compilers. We
were initially drawn to supercompilation for two reasons. Firstly,
all intermediate values have the potential to be eliminated, regard-
less of their type or the functions which operate on them. Secondly,
supercompilation is a single-pass optimisation, avoiding the tricky
problem of ordering compiler phases for best optimisation. With
these advantages supercompilation has the potential to drastically
simplify an optimising compiler, while still achieving great per-
formance. Our supercompiler builds on these advantages, rethink-
ing supercompilation to make it simpler and improve compilation
times.

Acknowledgements
I would like to thank Max Bolingbroke, Jason Reich, Simon Peyton
Jones, Colin Runciman and Peter Jonsson for helpful discussions.
Thanks to Ketil Malde for providing further inspiration to continue
researching supercompilation. Thanks to Max Bolingbroke, Mike
Dodds and the anonymous referees for helpful comments on earlier
drafts.

References
Urban Boquist and Thomas Johnsson. The GRIN project: A highly opti-

mising back end for lazy functional languages. In Proc IFL ’96, volume
1268 of LNCS, pages 58–84. Springer-Verlag, 1996.

Olaf Chitil. Common subexpressions are uncommon in lazy functional
languages. LNCS, 1467:53–71, 1998.

Duncan Coutts, Roman Leshchinskiy, and Don Stewart. Stream fusion:
From lists to streams to nothing at all. In Proc ICFP ’07, pages 315–
326. ACM Press, October 2007.

Cormac Flanagan, Amr Sabry, Bruce Duba, and Matthias Felleisen. The
essence of compiling with continuations. In Proc PDLI ’93, volume
28(6), pages 237–247. ACM Press, New York, 1993.

Yoshihiko Futamura. Partial evaluation of computation process – an ap-
proach to a compiler-compiler. Higher-Order and Symbolic Computa-
tion, 12(4):381–391, 1999.

Andrew Gill, John Launchbury, and Simon Peyton Jones. A short cut to
deforestation. In Proc FPCA ’93, pages 223–232. ACM Press, June
1993.

Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor. Yhc.Core – from
Haskell to Core. The Monad.Reader, 1(7):45–61, April 2007.

Thomas Johnsson. Lambda lifting: transforming programs to recursive
equations. In Proc. FPCA ’85, pages 190–203. Springer-Verlag, 1985.

Neil Jones, Carsten Gomard, and Peter Sestoft. Partial Evaluation and
Automatic Program Generation. Prentice-Hall International, 1993.

Peter Jonsson and Johan Nordlander. Positive supercompilation for a higher
order call-by-value language. In POPL ’09, pages 277–288. ACM, 2009.

Ilya Klyuchnikov. Supercompiler HOSC 1.0: under the hood. Preprint 63,
Keldysh Institute of Applied Mathematics, Moscow, 2009.

Ilya Klyuchnikov. Supercompiler HOSC 1.1: proof of termination.
Preprint 21, Keldysh Institute of Applied Mathematics, Moscow, 2010.

J Kort. Deforestation of a raytracer. Master’s thesis, University of Amster-
dam, 1996.

Joseph Kruskal. Well-quasi-ordering, the tree theorem, and Vazsonyi’s
conjecture. Transactions of the American Mathematical Society, 95(2):
210–255, 1960.

Michael Leuschel. Homeomorphic embedding for online termination of
symbolic methods. In The essence of computation: complexity, analysis,
transformation, pages 379–403. Springer-Verlag, 2002.

Simon Marlow. Deforestation for Higher-Order Functional Programs. PhD
thesis, University of Glasgow, 1996.

Simon Marlow, Alexey Rodriguez Yakushev, and Simon Peyton Jones.
Faster laziness using dynamic pointer tagging. In Proc. ICFP ’07, pages
277–288. ACM Press, October 2007.

John Meacham. jhc: John’s Haskell compiler. http://repetae.net/
john/computer/jhc/, 2008.

Neil Mitchell. Transformation and Analysis of Functional Programs. PhD
thesis, University of York, 2008.

Neil Mitchell and Colin Runciman. A supercompiler for core Haskell. In
Selected papers from IFL 2007, volume 5083 of LNCS, pages 147–164.
Springer-Verlag, May 2008.

Will Partain et al. The nofib Benchmark Suite of Haskell Programs.
http://darcs.haskell.org/nofib/, 2008.

Simon Peyton Jones. Implementing lazy functional languages on stock
hardware: The spineless tagless G-machine. JFP, 2(2):127–202, 1992.

Simon Peyton Jones. Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003.

Simon Peyton Jones. Call-pattern specialisation for Haskell programs. In
Proc. ICFP ’07, pages 327–337. ACM Press, October 2007.

Simon Peyton Jones and John Launchbury. Unboxed values as first class
citizens in a non-strict functional language. In Proc FPCA ’91, volume
523 of LNCS, pages 636–666. Springer-Verlag, August 1991.

Simon Peyton Jones and Simon Marlow. Secrets of the Glasgow Haskell
Compiler inliner. JFP, 12:393–434, July 2002.

Simon Peyton Jones, Will Partain, and Andre Santos. Let-floating: Moving
bindings to give faster programs. In Proc. ICFP ’96, pages 1–12. ACM
Press, 1996.

Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. Playing by the
rules: Rewriting as a practical optimisation technique in GHC. In Proc.
Haskell ’01, pages 203–233. ACM Press, 2001.

Jens Peter Secher and Morten Sørensen. On perfect supercompilation.
In Proceedings of Perspectives of System Informatics, volume 1755 of
LNCS, pages 113–127. Springer-Verlag, 2000.

Morten Sørensen and Robert Glück. An algorithm of generalization in
positive supercompilation. In Logic Programming: Proceedings of the
1995 International Symposium, pages 465–479. MIT Press, 1995.

The GHC Team. The GHC compiler, version 6.12.1. http://www.
haskell.org/ghc/, December 2009.

Andrew Tolmach. An external representation for the GHC core lan-
guage. http://www.haskell.org/ghc/docs/papers/core.ps.
gz, September 2001.

Valentin Turchin. The concept of a supercompiler. ACM Trans. Program.
Lang. Syst., 8(3):292–325, 1986.

Valentin Turchin. The algorithm of generalization in the supercompiler.
In Partial Evaluation and Mixed Copmutation, pages 341–353. North-
Holland, 1988.

Valentin Turchin. Refal-5, Programming Guide & Reference Manual. New
England Publishing Co., Holyoke, MA, 1989.

Philip Wadler. Deforestation: Transforming programs to eliminate trees.
Theoretical Computer Science, 73:231–248, 1990.

Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less
ad hoc. In Proc. POPL ’89, pages 60–76. ACM Press, 1989.

