
Deriving a Relationship from a Single Example

Neil Mitchell
ndmitchell@gmail.com

Abstract
Given an appropriate domain specific language (DSL), it is possible
to describe the relationship between Haskell data types and many
generic functions, typically type-class instances. While describing
the relationship is possible, it is not always an easy task. There is an
alternative – simply give one example output for a carefully chosen
input, and have the relationship derived.

When deriving a relationship from only one example, it is im-
portant that the derived relationship is the intended one. We identify
general restrictions on the DSL, and on the provided example, to
ensure a level of predictability. We then apply these restrictions in
practice, to derive the relationship between Haskell data types and
generic functions. We have used our scheme in the DERIVE tool,
where over 60% of type classes are derived from a single example.

1. Introduction
In Haskell (Peyton Jones 2003), type classes (Wadler and Blott
1989) are used to provide similar operations for many data types.
For each data type of interest, a user must define an associated in-
stance. The instance definitions usually follow a highly regular pat-
tern. Many libraries define new type classes, for example Trinder
et al. (1998) define the NFData type class, which reduces a value to
normal form. As an example, we can define a data type to describe
some computer programming languages, and provide an NFData
instance:

data Language = Haskell [Extension] Compiler
| Whitespace
| Java Version

instance NFData Language where
rnf (Haskell x1 x2) = rnf x1 `seq̀ rnf x2 `seq̀ ()
rnf (Whitespace) = ()
rnf (Java x1) = rnf x1 `seq̀ ()

We also need to define NFData instances for the data types
Extension, Compiler and Version. Any instance of NFData fol-
lows naturally from the structure of the data type: for each con-
structor, all fields have seq applied, before returning ().

Writing an NFData instance for a single simple data type is
easy – but for multiple complex data types the effort can be substan-
tial. The standard solution is to express the relationship between a
data type and it’s instance. In standard tools, such as DrIFT (Win-
stanley 1997), the person describing a relationship must be famil-
iar with both the representation of a data type, and various code-
generation functions. The result is that specifying a relationship is
not as straightforward as one might hope.

Using the techniques described in this paper, these relationships
can often be automatically inferred from a single example. To de-
fine the generation of all NFData instances, we require an example
to be given for the Sample data type defined in Figure 1:

data Sample α = First
| Second α α
| Third α

Figure 1. The Sample data type.

instance NFData α ⇒ NFData (Sample α) where
rnf (First) = ()
rnf (Second x1 x2) = rnf x1 `seq̀ rnf x2 `seq̀ ()
rnf (Third x1) = rnf x1 `seq̀ ()

The NFData instance for Sample follows the same pattern as
for Language. From this example, we can infer the general rela-
tionship. However, there are many possible relationships between
the Sample data type and this result – for example the function
might always generate the instance for Sample, regardless of the
input type. We overcome this problem by requiring the relationship
to be written in a domain specific language (DSL), and that the ex-
ample has certain properties (see §2). With our restrictions, we can
regain predictability.

1.1 Contributions
This paper makes the following contributions:

• We describe a scheme which allows us to infer predictable and
correct relationships (§2).

• We describe how this scheme is applicable to instance genera-
tion, both in a high-level manner (§3), and more detailed prac-
tical concerns (§5).

• We outline a method for deriving a relationship in our DSL,
without resorting to unguided search (§4).

• We give results (§6), including reasons why our inference fails
(§6.1). In our experience, over 60% of Haskell type classes can
be derived using our method.

2. Our Derivation Scheme
In this section we define a general scheme for deriving functions,
which we later use to derive type-class instance generators. In
general terms, a function takes an input to an output. In our case,
we restrict ourselves to functions that can be described by a DSL
(domain specific language). We need an apply function to serve as
an interpreter for our DSL, which takes a DSL and an input and
produces an output. Our scheme can be implemented in Haskell as
follows:

data Input
data Output
data DSL

apply :: DSL → Input → Output

Now we turn to the derivation scheme. Given a single result of
the Output type, for a particular sample Input, we wish to derive
a suitable DSL. It may not be possible to derive a suitable DSL,
so our derivation function must allow for the possibility of failure.
Instead of producing at most one DSL, we instead produce a list
of DSLs, following the lead of Wadler (1985). Once again, we can
implement this in Haskell as:

sample :: Input
derive :: Output → [DSL]

We require our scheme to have two properties – correctness
(it works) and predictability (it is what the user intended). We
now define both of these properties more formally, along with
restrictions necessary to achieve them.

2.1 Correctness
The derivation of a particular output is correct if all derived DSLs,
when applied to the sample input, produce the original output:

∀ o ∈ Output • ∀ d ∈ derive o • apply d sample ≡ o

Given an existing derive′ function, which does not necessarily
ensure correctness, we can create a correct version by filtering out
the incorrect DSLs. By applying this modification we can remove
some constraints from the derive′ function – either simplifying the
implementation, or gaining a higher assurance of correctness.

derive o = [d | d ← derive′ o, apply d sample ≡ o]

2.2 Predictability
A derived relationship is predictable if the user can be confident
that it matches their expectations. In particular, we don’t want the
user to have to understand the complex derive function to gain
predictability. In this section we attempt to simplify the task of
defining predictable derivation schemes.

Before defining predictability, it is useful to define congruence
of DSLs. We define two DSLs to be congruent (∼=), if for every
input they produce identical results – i.e. apply d1 ≡ apply d2.

d1
∼= d2 ⇐⇒∀ i ∈ Input • apply d1 i ≡ apply d2 i

Our derive function returns a list of suitable DSLs. To ensure
consistency, it is important that the DSLs are all congruent – allow-
ing us to choose any DSL as the answer.

∀ o ∈ Output • ∀ d1, d2 ∈ derive o • d1
∼= d2

This property is dependent on the implementation of the derive
function, so is insufficient for ensuring predictability. To ensure
predictability we require that all results satisfying the correctness
property are congruent:

∀ d1, d2 ∈ DSL •
apply d1 sample ≡ apply d2 sample ⇒ d1

∼= d2

The combination of this predictability property and the correct-
ness property implies the consistency property. It is important to
note that predictability does not impose conditions on the derive
function, only on the DSL and sample input. The sample input is
chosen by the author of the derivation scheme, so the user is not
required to understand the reasons for it’s form. To ensure pre-
dictability the user may have to know some details about the DSL,
but hopefully these will not be too onerous.

2.3 Summary
If the predictability property holds for the DSL and sample value,
and we use the modified derive in terms of derive′, then any result
produced by derive will be a valid relationship. These properties

allow us to write the derive function focusing on other attributes
(which we discuss in §4).

To use this general scheme, we need to instantiate it to our
particular problem (§3), check the predictability property (§3.4),
and implement a derive function (§4).

3. Deriving Instances
In this section we apply the scheme from §2 to the problem of de-
riving type class instances. We let the output type be Haskell source
code and the input type be a representation of algebraic data types.
The DSL contains features such as list manipulation, constant val-
ues, folds and maps. We first describe each type in detail, then dis-
cuss the restrictions necessary to satisfy the predictability property.

3.1 Output
We wish to generate any sequence of Haskell declarations, where a
declaration is typically a function definition or type class instance.
There are several ways to represent a sequence of declarations:

String A sequence of Haskell declarations can be represented as
the string of the program text. However, the lack of structure
in a string poses several problems. When constructing strings
it is easy to generate invalid programs, particularly given the
indentation and layout requirements of Haskell. It is also hard
to recover structure from the program that is likely to be useful
for deriving relationships.

Pretty printing combinators Some tools such as DrIFT (Win-
stanley 1997) generate Haskell code using pretty printing com-
binators. These combinators supply more structure than strings,
but the structure is linked to the presentation, rather than the
meaning of constructs.

Typed abstract syntax tree (AST) The standard way of working
with Haskell source code is using a typed AST – an AST where
different types of fragment (i.e. declarations, expressions and
patterns) are restricted to different positions within the tree. The
first version of DERIVE used a typed AST, specifically Tem-
plate Haskell (Sheard and Peyton Jones 2002). This approach
preserves all the structure, and makes it reasonably easy to en-
sure the generated program is syntactically correct. By combin-
ing a typed AST with a parser and pretty printer we can convert
between strings as necessary.

Untyped abstract syntax tree (AST) An untyped AST is an AST
where all fragments have the same type, and types do not re-
strict where a fragment may be placed. The removal of types
increases the number of invalid programs that can be repre-
sented – for example a declaration could occur where an expres-
sion was expected. However, by removing types we increase the
similarity of the tree, in turn simplifying function that operate
on the tree in a uniform manner.

For our purposes, it is clear that both strings and pretty printing
combinators are unsuitable – they lack sufficient structure to imple-
ment the derive operation. The choice between a typed and untyped
AST is one of safety vs simplicity. The use of a typed AST in the
first version of DERIVE caused many complexities – notably the
DSL was hard to represent in a well-typed manner and some func-
tions had to be duplicated for each type. The loss of safety from us-
ing an untyped AST is not too serious, as both DSLs and ASTs are
automatically generated, rather than being written by hand. There-
fore, we chose to use untyped ASTs for the current version of DE-
RIVE. We discuss possible changes to regain type safety in §8.

While we work internally with an untyped AST, existing
Haskell libraries for working with ASTs use types. To allow the
use of existing libraries we start from a typed AST and collapse it

to a single type, using the Scrap Your Boilerplate generic program-
ming library (Lämmel and Peyton Jones 2003, 2004).

The use of Template Haskell in the first version of DERIVE
provided a number of advantages – it is built in to GHC and can
represent a large range of Haskell programs. Unfortunately, there
were also a number of problems:

• Being integrated in to GHC ensures Template Haskell is avail-
able everywhere GHC is, but also means that Template Haskell
cannot be upgraded separately. Users of older versions of GHC
cannot take advantage of improvements to Template Haskell,
and every GHC upgrade requires modifications to DERIVE.

• Template Haskell does not support new GHC extensions –
they are often implemented several years later. For example,
Template Haskell does not yet support view patterns.

• Template Haskell allows generated instances to be used easily
by GHC compiled programs, but it makes the construction of a
standalone preprocessor harder.

• If Template Haskell is also used to read the input data type
(as it was in the first version of DERIVE) then only data types
contained in compilable modules can be used. In particular, all
necessary libraries must be compiled before an instance could
be generated.

• The API of Template Haskell is relatively complex, and has
some inconsistencies. In particular the Q monad caused much
frustration.

We have implemented the current version of DERIVE using
the haskell-src-exts library (Broberg 2009). The haskell-src-exts
library is well maintained, supports most Haskell extensions 1 and
operates purely as a library. We convert the typed AST of haskell-
src-exts to a universal data type:

data Output = OString String
| OInt Int
| OList [Output]
| OApp String [Output]

OString and OInt represent strings and integers. The OList con-
structor generates a list from a sequence of Output values. The
expression OApp c xs represents the constructor c with fields xs.
For example Just [1, 2] would be represented by the expression
OApp "Just" [OList [OInt 1, OInt 2]].

Our Output type can represent many impossible values, for
example the expression OApp "Just" [] (wrong number of fields)
or OApp "Maybe" [] (not a constructor). We consider any Output
value that does not represent a haskell-src-exts value to be an error.
The root Output value must represent a value of type [Decl]. We
can translate between our Output type and the haskell-src-exts type
[Decl]:

toOutput :: [Decl] → Output
fromOutput :: Output → [Decl]

We have implemented these functions using the SYB generics
library (Lämmel and Peyton Jones 2004), specifically we have
implemented the more general:

toOut :: Data α ⇒ α → Output
fromOut :: Data α ⇒ Output → α

These functions are partial – they only succeed if the Output
value represents a well-typed haskell-src-exts value. When operat-
ing on the Output type, we are working without type safety. How-
ever, provided all DSL values are constructed by derive, and that

1 Haskell-src-exts supports even more extensions than GHC!

derive only constructs well-formed DSL values, our fromOutput
function will be safe.

3.2 Input
While the output type is largely dictated by the need to generate
Haskell, we have more freedom with the input type. The input type
represents Haskell data types, but we can choose which details
to include, and thus which relationships we can represent. For
example, we can include the module name in which the data type
is defined, or we can omit this detail. We choose not to include the
module name, which eliminates some derivations, for example the
Typeable type class (Lämmel and Peyton Jones 2003).

Our Input type represents algebraic data types. We include
details such as the arity of each constructor (ctorArity), the 0-
based index of each constructor (ctorIndex) and the number of type
variables (dataVars), but omit details such as types and record field
names. Our Input type is:

data Input = Input
{dataName :: String, dataVars :: Int, dataCtors :: [Ctor]}

data Ctor = Ctor
{ctorName :: String, ctorIndex :: Int, ctorArity :: Int}

Values of Input for the Sample data type (Figure 1) and the
Language data type (§1) are:

sampleType :: Input
sampleType = Input "Sample" 1

[Ctor "First" 0 0
, Ctor "Second" 1 2
, Ctor "Third" 2 1]

languageType :: Input
languageType = Input "Language" 0

[Ctor "Haskell" 0 2
, Ctor "Whitespace" 1 0
, Ctor "Java" 2 1]

The Input constructor contains the name of the data type, and
the number of type variables the data type takes. For each construc-
tor we record the name, 0-based index, and arity. These choices
allow derivations to depend on the arity or index of a constructor,
but not the types of a constructors arguments. In §6 we consider
possible extensions to the Input type.

3.3 DSL
Our DSL type is given in Figure 2, and our apply function is given
in Figure 3. The operations in the DSL are split in to six groups
– we first give a high-level overview of the DSL, then return to
each group in detail. The apply function is written in terms of
applyEnv, where an environment is passed including the input
data type, and other optional fields. Some functions in the DSL
add to the environment (i.e. MapCtor), while others read from the
environment (i.e. CtorName). Any operation reading a value from
the environment must be nested within an operation placing that
value in the environment.

Some operations require particular types – for example Reverse
requires it’s argument to evaluate to OList. Where possible we have
annotated these restrictions in the DSL definition using comments.
We have used view patterns, as implemented in GHC 6.10 (The
GHC Team 2009), to perform matches on the evaluated argument
DSLs. Our use of view patterns can be understood with the simple
translation2:

2 View-patterns and pattern-guards in GHC have different scoping be-
haviour, but this difference does not effect our apply function.

data DSL
-- Constants

= String String
| Int Int
| List [DSL]
| App String DSL {-[α] -}

-- Operations
| Concat DSL {-[[α]] -}
| Reverse DSL {-[α] -}
| ShowInt DSL {-Int -}

-- Fold
| Fold DSL DSL
| Head
| Tail

-- Constructors
| MapCtor DSL
| CtorIndex
| CtorArity
| CtorName

-- Fields
| MapField DSL
| FieldIndex

-- Custom
| DataName
| Application DSL {-[Exp] -}
| Instance [String] String DSL {-[InstDecl] -}

Figure 2. DSL data type

f (Reverse (f → OList xs)) = . . .
≡

f (Reverse v1) | OList xs ← f v1 = . . .
≡

f (Reverse v1) | case v2 of OList { } → True; → False = . . .
where v2 = f v1;OList xs = v2

Some operations have restrictions on what their arguments must
evaluate to, and what environment values must be available. It
would be possible to capture many of these invariants using either
phantom types (Fluet and Pucella 2002) or GADTs (Peyton Jones
et al. 2006). However, for simplicity, we choose not to.

3.3.1 Constants
We include constants in our DSL, so we can lift values of Output to
values of DSL. The String, Int, List operations are directly equiv-
alent to the corresponding Output values. The App constructor is
similar to OApp, but instead of taking a list of arguments, App
takes a single argument, which must to evaluate to an OList. Re-
quiring an OList rather than an explicit list allows the arguments to
App to be constructed by operations such as Reverse or Concat.

3.3.2 Operations
The operations group consists of useful functions for manipulat-
ing lists, strings and integers. The operations have been added as
required, based on functions in the Haskell Prelude. The Concat
operation corresponds to concat, and concatenates either a list of
lists, or a list of strings. The Reverse operation performs reverse
on a list. The ShowInt operation performs show, converting an in-
teger to a string. We have only included functions for which we
have found a specific need, for example Reverse cannot be applied
to a string, even though there is a sensible interpretation. We do not

apply :: DSL → Input → Output
apply dsl input = applyEnv dsl Env {envInput = input}

data Env = Env {envInput :: Input
, envCtor :: Ctor
, envField :: Int
, envFold :: (Output, Output)}

applyEnv :: DSL → Env → Output
applyEnv dsl env@(Env input ctor field fold) = f dsl

where
vars = take (dataVars input) $ map (:[]) [’a’ . .]

f (Instance ctx hd body) =
OApp "InstDecl"

[toOut
[ClassA (UnQual $ Ident c) [TyVar $ Ident v]
| v ← vars, c ← ctx]

, toOut $ UnQual $ Ident hd
, toOut [foldl TyApp

(TyCon $ UnQual $ Ident $ dataName input)
[TyVar $ Ident v | v ← vars]]

, f body]

f (Application (f → OList xs)) =
foldl1 (λa b → OApp "App" [a, b]) xs

f (MapCtor dsl) = OList [applyEnv dsl env {envCtor = c}
| c ← dataCtors input]

f (MapField dsl) = OList [applyEnv dsl env {envField = i}
| i ← [1 . . ctorArity ctor]]

f DataName = OString $ dataName input
f CtorName = OString $ ctorName ctor
f CtorArity = OInt $ ctorArity ctor
f CtorIndex = OInt $ ctorIndex ctor
f FieldIndex = OInt $ field

f Head = fst fold
f Tail = snd fold
f (Fold cons (f → OList xs)) =

foldr1 (λa b → applyEnv cons env {envFold = (a, b)}) xs

f (List xs) = OList $ map f xs
f (Reverse (f → OList xs)) = OList $ reverse xs
f (Concat (f → OList [])) = OList []
f (Concat (f → OList xs)) = foldr1 g xs

where g (OList x) (OList y) = OList (x ++ y)
g (OString x) (OString y) = OString (x ++ y)

f (String x) = OString x
f (Int x) = OInt x
f (ShowInt (f → OInt x)) = OString $ show x
f (App x (f → OList ys)) = OApp x ys

Figure 3. The apply function.

provide an append or (++) operation, but one can be created from
a combination of List and Concat. These operations are all simple,
and would be appropriate for many DSLs.

Some examples of these operations in use are:

Concat (List [String "hello ", String "world"])
≡ OString "hello world"

Reverse (List [Int 1, Int 2, Int 3])
≡ OList [OInt 3, OInt 2, OInt 1]

ShowInt (Int 42) ≡ OString "42"

3.3.3 Fold
The Fold operation corresponds to foldr1, but can be combined
with Reverse to simulate foldl1. The first argument of Fold is a
function – a DSL containing Head and Tail operations. The second
argument must evaluate to a list containing at least one element. If
the list has exactly one element, that is the result. If there is more
than one element, then Head is replaced by the first element, and
Tail is replaced by a fold over the remaining elements. This can be
described by:

Fold fn [x] = x
Fold fn (x : xs) = fn [x / Head, Fold fn xs / Tail]

For example, to implement concat in terms of an Append
operation would be Fold (Append Head Tail) (ignoring the case
of the empty list). The fold operation is more complicated than the
previous operations, but may still be useful to other DSLs.

3.3.4 Constructors
To insert information from the constructors we provide MapCtor.
This operation generates a list, with the argument DSL evalu-
ated once with each different constructor in the environment. The
argument to MapCtor may contain CtorName, CtorIndex and
CtorArity operations, which retrieve the information associated
with the constructor. CtorName produces a string, while the others
produce integers. An example of MapCtor on the Sample data type
is:

MapCtor CtorName ≡ OList
[OString "First", OString "Second", OString "Third"]

3.3.5 Fields
The MapField operation is similar to MapCtor, but maps over each
field within a constructor. MapField is only valid within MapCtor.
Within MapField, the FieldIndex operation returns the 1-based
index of the current field. While most indexing in Haskell is 0-
based, fields usually correspond to variable indices (i.e. x1), which
tend to be 1-based. As an example of MapField, using Second as
the constructor in the environment:

Concat (List [List [CtorName],
MapField (Concat (List [String "v", ShowInt FieldIndex]))])
≡ ["Second", "v1", "v2"]

3.3.6 Custom
The final set of operations are all specific to our particular problem.
The simplest operation in this group is DataName, which returns
the string corresponding to the name of the data type.

The second operation is Application. The haskell-src-exts li-
brary uses binary application, where multiple applications are often
nested – we provide Application to represent vector application.
Vector application is often used to call constructors with arguments
resulting from MapField.

The final operation is Instance, and is used to represent a com-
mon pattern of instance declaration. For example, given the type
Either α β, a typical instance declaration might be:

instance (Show α, Ord α, Show β, Ord β) ⇒
ShowOrd (Either α β) where . . .

This pattern requires each type variable to be a member of a set of
type classes. The resulting instance construction is:

Instance ["Show", "Ord"] "ShowOrd" . . .

The Instance fields describe which classes are required for each
type variable (i.e. Show and Ord in this example), what the main
class is (i.e. ShowOrd), and a DSL to generate the body. To specify
this pattern without a specific Instance operation would require
operations over type variables – something we do not support.

3.4 Restrictions for Predictability
To ensure predictability there must be no non-congruent DSL val-
ues which give equal results when applied to the sample input.
Currently this invariant is violated – consider the counterexam-
ple DataName vs String "Sample". When applied to the sam-
ple input, both will generate OString "Sample", but when applied
to other data types they generate different values. To regain pre-
dictability we impose three additional restrictions on the DSL:

1. The strings Sample, First, Second and Third cannot be con-
tained in any String construction. Therefore, in the above ex-
ample, String "Sample" is invalid.

2. All instances must be constructed with Instance.

3. Within MapCtor we require that the argument DSL must in-
clude CtorName.

We have already seen an example of the first restriction in
practice, and the second restriction has similar motivation – to
avoid making something constant when it should not be. Now let
us examine the third restriction, with a practical example:

instance Arities (Sample α) where
arities = [0, 2, 1]

Given this instance, we could either infer the arities function
always returns [0, 2, 1], or it returns the arity of each constructor.
While a human can spot the intention, there is a potential ambiguity.
Using the second restriction, we conclude that this must represent
the constant operation. To derive a version returning the arities we
can write:

instance Arities (Sample α) where
arities = [const 0 First{}

, const 2 Second{}
, const 1 Third{}]

While this code code is more verbose, any good optimiser
(i.e. GHC) will generate identical code. We return to the issue of
possible simplifications in §5.2.

While our DSL has forms of iteration (i.e. MapCtor), it does
not have any conditional constructs such as if or case. The lack
of conditionals is important for predictability – for every possible
choice it would be necessary for the Sample type to choose all
branches, thus increasing the size of Sample.

The restrictions in this section ensure that no fragment of output
can be represented by both a constant and be parameterised by the
data type. The Sample type ensures no fragment can be parame-
terised in multiple ways, by having different artiy/index values for
some constructors – explaining why the Second constructor has ar-
ity 2, while the Third has arity 1. The restrictions in this section,
along with the Sample data type, ensure predictability. We have

checked the predictability property using QuickCheck (Claessen
and Hughes 2000).

4. Implementing derive

This section covers the implementation of a derive function, as
described in §2. There are many ways to write a derive function,
our approach is merely one option – we hope that the scheme we
have described provides ample opportunity for experimentation.

Before implementing derive it is useful to think about which
properties are desirable. It is not necessary to guarantee correct-
ness (see §2.1), but our method chooses to only generate correct re-
sults. We have shown that our DSL and sample input guarantee pre-
dictability without regard to the derive function, provided we meet
the restrictions in §3.4, which we obey. We want our derive func-
tion to terminate, and ideally terminate within a reasonable time
bound. Finally, we would like the derive function to find an answer
if one exists, i.e.:

∀ o ∈ Output, d ∈ DSL • null (derive o) ⇒ apply d sample 6≡ o

We were unable to implement a derive function meeting this
property for our problem which performed acceptably. Our method
is a trade off between runtime and success rate, with a particular
desire to succeed for real-world examples.

Our derive implementation is based around a parameterised
guess. Each fragment of output is related to a guess – a DSL
parameterised by some aspect of the environment. For example,
OString "First" results in the guess CtorName parameterised by
the first constructor. Concretely, our central Guess type is:

data Guess = Guess DSL
| GuessCtr Int DSL -- 0-based index
| GuessFld Int DSL -- 1-based index

derive :: Output → [DSL]
derive o = [d | Guess d ← guess o]

guess :: Output → [Guess]

Applying guess (OString "First") produces a guess of
GuessCtr 0 CtorName. The GuessCtr and GuessFld guesses are
paramterised by either constructors or fields, and can only occur
within MapCtor or MapField respectively. The Guess guess is ei-
ther parameterised by the entire data type, or is a constant which
does not refer to the environment at all.

To generate a guess for the entire output, we start by generating
guesses for each leaf node of the Output value, then work upwards
combining them. If at any point we see an opportunity to apply
one of our custom rules (i.e. Instance), we do so. The important
considerations are how we create guesses for the leaves, how we
combine guesses together, and where we apply our custom rules.
We require that all generated guesses are correct, defined by:

∀ o ∈ Output • ∀ g ∈ guess o • applyGuess g ≡ o

applyGuess :: Guess → Output
applyGuess (Guess d) = applyEnv d

Env {envInput = sample}
applyGuess (GuessCtr i d) = applyEnv d

Env {envInput = sample, envCtor = dataCtors sample !! i}
applyGuess (GuessFld i d) = applyEnv d

Env {envInput = sample, envField = i}

4.1 Guessing Constant Leafs
4.1.1 String
To guess an OString value is simple – if it has a banned substring
(i.e. Sample or one of the constructors) we generate an appropri-
ately parameterised guess, otherwise we use the constant string.
Some examples:

OString "hello" ≡ Guess (String "hello")
OString "Sample" ≡ Guess DataName
OString "First" ≡ GuessCtr 0 CtorName
OString "isThird" ≡ GuessCtr 2

(Concat (List [String "is", CtorName]))

4.1.2 Application
The guess for an OApp is composed of two parts – the name of
the constructor to apply and the list of arguments. The name of
the constructor in App always exactly matches that in OApp. The
arguments to App are created by applying guess to the list, and
wrapping the generated DSL in App op. The guess for OApp can
be written as:

guess (OApp op xs) = map (lift (App op)) (guess (OList xs))

lift :: (DSL → DSL) → Guess → Guess
lift f (Guess d) = Guess (f d)
lift f (GuessCtr i d) = GuessCtr i (f d)
lift f (GuessFld i d) = GuessFld i (f d)

4.1.3 Integer
Given an integer there may be several suitable guesses. An integer
could be a constant, a constructor index or arity, or a field index.
We can guess an OInt as follows:

guess (OInt i) =
[GuessFld i FieldIndex | i ∈ [1, 2]] ++
[GuessCtr 1 CtorIndex | i ≡ 1] ++
[GuessCtr 1 CtorArity | i ≡ 2] ++
[Guess (Int i)]

And some examples:

OInt 0 ≡ [Guess (Int 0)]
OInt 1 ≡ [GuessFld 1 FieldIndex, GuessCtr 1 CtorIndex

, Guess (Int 1)]
OInt 2 ≡ [GuessFld 2 FieldIndex, GuessCtr 1 CtorArity

, Guess (Int 2)]
OInt 3 ≡ [Guess (Int 3)]

When guessing an OInt, we never generate guesses for any
constructors other than Second (represented by GuessCtr 1) – the
reason is explained in §4.2.3.

4.2 Lists
Lists are the most complex values to guess. To guess a list requires
a list of suitable guesses for each element, which can be collapsed
into a single guess. Given a suitable collapse function we can write:

guess (OList xs) = mapMaybe
(liftM fromLists ◦ collapse ◦ toLists) (mapM guess xs)

fromLists = lift Concat
toLists = map (lift (λx → List [x]))

collapse :: [Guess] → Maybe Guess

The mapM function uses the list monad to generate all possi-
ble sequences of lists. The toLists function lifts each guess to a

singleton list, and the fromLists function concatenates the results
– allowing adjacent guesses to be collapsed without changing the
result type. The function collapse applies the following three rules,
returning a Just result if any possible sequence of rule applications
reduces the list to a singleton element.

4.2.1 Promotion
The promotion rule adds a parameter to a guess. We can promote
Guess to either GuessFld or GuessCtr, with any parameter value.
The value Guess d, can be promoted to either of GuessCtr i d or
GuessFld i d, for any index i. The promotion rule does not reduce
the number of elements in the list, but allows other rules to apply,
in particular the conjunction rule.

4.2.2 Conjunction
If two adjacent guesses have the same parameter value, they can be
combined in to one guess. For example, given GuessCtr 2 d1 and
GuessCtr 2 d2 we produce GuessCtr 2 (Concat (List [d1, d2])).
This rule shows the importance of each guess evaluating to a list.

4.2.3 Sequence
The sequence rule introduces either MapField or MapCtor from a
list of guesses. Given two adjacent guesses we can apply the rule:

(GuessFld 1 d1) (GuessFld 2 d2)
| applyGuess (GuessFld 2 d1) ≡ applyGuess (GuessFld 2 d2)
= GuessCtr 1 (MapField d1)

It is important that the fields are in the correct order, one of the
DSL values (in this case d1) is applicable to both problems, and the
resultant guess is paramterised by the Second constructor (which
has two fields). We also permit sequences in reverse order, which
we generate by reversing the list before, and inserting a Reverse
afterwards.

The sequence construction for fields can be extended to con-
structors by demanding three guesses parameterised by consecu-
tive constructors. For constructors we only check using the DSL
relating to the Second constructor, as this DSL is the only one that
could have a MapField construct within it. Because we only test
against the Second DSL, we can avoid generating CtorArity and
CtorIndex guesses for the other constructors. We also require that
when creating a MapCtor the guess contains a CtorName, to en-
sure the restrictions from §3.4 are met.

4.3 Folds
The addition of fold to our DSL is practically motivated – a number
of real derivations require it. Currently we only attempt to find folds
in a few special cases. We require folds to start with one of the
following patterns:

OApp m [OApp m [x, op, y], op, z]
OApp m [x, op, OApp m [y, op, z]]

Given such a pattern, we continue down the tree finding all
matching patterns of op and m. After constructing a fold we then
apply guess to the residual list.

4.4 Application
As with fold, the introduction of Application is practically moti-
vated. We replace any sequence of left-nested OApp "App" ex-
pressions with Application.

4.5 Instance
As per the restrictions given in §3.4, the only way of creating an
Instance value as output is to use the Instance DSL operator – it
is forbidden to use App "Instance". Given this restriction, we

translate values to Instance where they follow the pattern set out in
§3.3.6.

5. Using Derived DSLs
This section discusses possible uses of a DSL after it has been
derived. We start by showing how to simplify a DSL, then how to
simplify the output produced by applying a DSL. Finally we give
some alternative uses for a DSL, other than applying it to an input.
We use the Arities type class from §3.4 as a recurring example.

5.1 DSL Simplification
We can replace a DSL with a simplified version provided the
simplified version is congruent to the original. Using the apply
function from Figure 3, we can determine a number of identities:

Concat (List (a ++ [List xs, List ys] ++ b)) ≡
Concat (List (a ++ [List (xs ++ ys)] ++ b))

Concat (List (a ++ [List []] ++ b)) ≡ Concat (List (a ++ b))
Concat (List [x]) ≡ x
Concat (List []) ≡ List []

To simplify a DSL we apply these identities from left to right
wherever they occur, using the Uniplate generics library (Mitchell
and Runciman 2007).

Unfortunately, even after simplifying the DSL, small examples
still produce complex DSLs3. As an example, we give an abbrevi-
ated form of the Arities DSL – the full DSL is given in Appendix A.
To simplify the presentation we have omitted some haskell-src-
ext nodes (i.e. Ident, UnQual, SrcLoc), and added some syntac-
tic sugar. We have written all DSL constructors in lower-case, and
used upper-case for App constructors. After these translations, the
Arities DSL is:

[[instance [] "Arities" [[InsDecl (FunBind [[Match
"arities"

[[PWildCard]]
Nothing
(List (mapCtor (application

[[Var "const", Int ctorArity, RecConstr ctorName [[]]]]
)))
(BDecls [[]])]]

)]]]]

5.2 Output Simplification
To obey the restrictions from §3.4 we require the addition of const
applications in the Arities instance. While these const applications
will be optimised away by a compiler, their removal simplifies the
output for human readers. After apply, we translate the Output
type to a haskell-src-exts type using the function fromOutput
(§3.1). We then perform a number of simplifications, mainly sim-
ple constant folding, often using inbuilt knowledge of particular
functions. Some of these simplifications can be applied by GHC
(i.e. const), while others can’t as they involve recursive functions
(i.e. length).

We present the output simplification directly as we have imple-
mented it, using the Uniplate generics library (Mitchell and Runci-
man 2007). All of the rules operate at the expression level, and each
rule is correct individually. To easily express matches we introduce
('), which converts complex expressions to strings before check-
ing for equality.

simplify :: Biplate α Exp ⇒ α → α
simplify = transformBi f

3 Hence the advantage of having these relationships derived, rather than
writing them by hand.

where
x' y = prettyPrint x ≡ y

f (App op (List xs))
| op' "length" = Lit $ Int $ fromIntegral $ length xs
| op' "head" = head xs

f (InfixApp (Lit (Int i)) op (Lit (Int j)))
| op' "-" = Lit $ Int $ i− j
| op' ">" = Con $ UnQual $ Ident $ show $ i > j

f (InfixApp x op y) | op' "‘const‘" = x
f (App (App con x) y) | con' "const" = x
f (Paren (Var x)) = Var x
f (Paren (Lit x)) = Lit x
f x = x

Some of these simplifications could be applied directly to the
DSL, for example the removal of const. However, other simplifica-
tions can’t be performed until after apply has been called, such as
the reduction of (CtorArity− 1). Currently we do not perform any
of these simplifications directly to the DSL, only to the output.

5.3 DSL Usage
The obvious way to use a value of our DSL is to apply it to an input
to generate an output, a haskell-src-exts AST. From an AST we
can pretty-print it, and compile the resulting code. Alternatively we
can use the haskell-src-meta library (Morrow 2009) to translate the
output into Template Haskell, which can be integrated into GHC
compiled programs.

5.3.1 Specialised Instance Generators
From a DSL we can generate a specialised instance generator, that
takes an input and produces an output directly, without the inter-
pretative step of the apply function. This construction corresponds
to the first Futamura projection (Futamura 1999). For example with
Arities, we could produce:

generateArities :: Input → [Decl]
generateArities input = [InstDecl srcLoc []

(UnQual $ Ident "Arities")
[foldl TyApp

(TyCon $ UnQual $ Ident $ dataName input)
(map (TyVar ◦ Ident) vars)]

[InsDecl (FunBind [Match srcLoc
(Ident "arities") [PWildCard] Nothing
. . .
(BDecls [])])]]

where vars = take (dataVars input) $ map (:[]) [’a’ . .]

Since our apply and fromOutput functions are both terminat-
ing, the generateArities function can be constructed as:

generateArities = fromOutput ◦ apply aritiesDSL

The fromOutput and apply functions can then be unfolded and
reduced until aritiesDSL has disappeared.

The first version of DERIVE generated a string corresponding
to the source code of a specialised instance generator – primarily
because it lacked a complete representation of the DSL. For the new
version of DERIVE we do not create specialised instance generators
– the only benefit would be the removal of interpretive overhead,
which we believe to be negligible.

5.3.2 Dynamic Instance Generators
In Haskell each instance is defined by some fragment of source
code, and new instances cannot be constructed at runtime. How-
ever, using Haskell’s reflection capabilities (Lämmel and Peyton

Jones 2004), one instance can define implementations for many
data types. For example, all algebraic data types can be given an
Arities instance with:

instance Data d type ⇒ Arities d type where
arities =

[const (d ctorArity d ctor) (d ctorNull d ctor :: d type)
| d ctor ← d dataCtors (undefined :: d type)]

This instance declaration was generated automatically from the
Arities DSL. The instance requires that the type support the Data
class, allowing type information to be queried at runtime. The
expression makes use of a number of library functions defined by
DERIVE, namely d dataCtors, d ctorArity and d ctorNull – all
defined in terms of operations within the Data class.

To use a dynamic instance generator it is necessary to enable
some Haskell extensions. The first is ScopedTypeVariables, which
allows the d type variable to be bound in the instance declaration
head and used within instance member functions. The second ex-
tension is to allow unrestricted overlapping instances, so that cus-
tom Arities declarations can be provided for basic types. Finally, it
is necessary to have Data and Typeable instances for each type of
interest – these can be derived automatically using either the DE-
RIVE tool4 or the extension DeriveDataTypeable.

Currently the creation of dynamic instances is limited to a small
number of examples, but we believe many more instances could
be dealt with. However, there are some instances which cannot be
produced dynamically. We have identified two cases so far:

1. DSLs which generate name bindings using information from
the data type, such as the name of the constructor (i.e. isFirst),
cannot be constructed.

2. If an instance makes use of a particular type class on fields, but
that class does not have an instance for all types implementing
Data, then the instance will not type check.

The use of dynamic instances removes the inconvenience of
a separate preprocessor, but only works on a restricted set of in-
stances. Dynamic instances increase runtime, due to the overhead
of reflection and the reduction of optimisation opportunities. Previ-
ously, only a handful of classes have provided dynamic instances –
the only one we are aware of is the Binary class. One reason for not
providing dynamic instances is that they are complex to write – use
of the SYB libraries requires an intricate combination of type-level
and value-level programming. Using DERIVE many type classes
could have dynamic instances created with ease, by first deriving
an instance from one example and then translating the DSL.

6. Results
This section discusses the results of using our automatic derivation
scheme on real examples. We first categorise the instances we are
unable to derive, then share some of the tricks we have developed
to succeed with more examples. For each limitation we discuss
possible modifications to our system to overcome it. Finally we
give timing measurements for our implementation.

6.1 Limitations of Automatic Derivation
The instance generation scheme given is not complete – there ex-
ist instances whose generator cannot be determined. The DERIVE
tool (Mitchell and O’Rear 2007) generates instances for user de-
fined data types. Of the 24 instances supported by DERIVE, 15 are
derived from one example, while 9 require hand-written instance

4 While the Data instance can be derived from a single example, alas
the Typeable instance cannot (see §6.1.1), but it is still available within
DERIVE.

generators. All the examples which can’t be derived are due to the
choices of abstraction in our Input type. We now discuss each of
the pieces of information lacking from Input that result in some
instances being inexpressible.

6.1.1 Module Names
Some type classes require information about the module containing
a type, for example Typeable instances (Lämmel and Peyton Jones
2003) follow the pattern:

typename Language = mkTyCon "ModuleName.Language"

instance Typeable Language where
typeOf = mkTyConApp typename Language []

The Typeable class performs runtime type comparison, so each
distinct type needs a distinct string to compare, and the module
name is used to disambiguate. Our Input type does not include
the module name, so cannot be used to derive Typeable. It would
be possible to define the string "Module.Name" as the module
name of the sample, and treat it in a similar manner to the string
"Sample". However, the only instance we are aware of that re-
quires the module name is Typeable, so we do not provide module
information.

6.1.2 Infix Constructors
Some instances treat infix constructors differently, for example the
Show instance on a prefix constructor is:

instance Show PrefixConstructor where
show (Prefix x y) = "Foo " ++ show x ++ " " ++ show y

But using an infix constructor:

instance Show InfixConstructor where
show (x :+: y) = show x ++ " :+: " ++ show y

Our Input type does not express whether a constructor is infix
or prefix, so cannot choose the appropriate behaviour. The loss of
infix information mainly effects instances which display informa-
tion to the user, i.e. Show and pretty printing (Hughes 1995). For
most type classes, the infix information is not used, and infix con-
structors can be bracketed and treated as prefix (:+:). To deal with
infix constructors would require an infix constructor added to the
Sample data type, and modifications to the DSL to allow differ-
ent results to be generated depending on infix information. These
changes would pose difficulties to predictability and require all ex-
ample instances to have at least one additional case defined – we
do not consider this a worthwhile trade off for a small number of
additional instances.

6.1.3 Record-based definitions
Haskell provides records, which allow some fields to be labelled.
Some operations make use of the record fields within a data type,
for example using the data type:

data Computer = Desktop {memory :: Int}
| Laptop {memory :: Int, weight :: Int}

It is easy to write the definition:

hasWeight Desktop{} = False
hasWeight Laptop{} = True

Where hasWeight returns True if the weight selector is valid for
that constructor, and False if weight x ≡ ⊥. Unfortunately our
Input type does not contain information about records, so cannot
express this definition. There are only a few type classes which
exhibit label specific behaviour, such as Show which outputs the
field name if present.

Record fields are not present in our Sample type, but could be
added. The difficulty is that Haskell allows for one field name to
be shared by multiple constructors, and allows some constructors
to have field names while others do not. This flexibility results
in a massive number of possible combinations, and so a Sample
type with sufficient generality would require many constructors.
Allowing records would be more feasible for a language such as
F#, where records contain only one constructor and all fields must
be named.

6.1.4 Type-based definitions
Our Sample data type has a simple type structure, and our DSL
does not allow decisions to be made on the basis of type – these
restrictions means some type classes can’t be defined. For ex-
ample, a Monoid instance processes items of the same type us-
ing mappend, but items of a different type using mempty. Sev-
eral other type classes require type specific behaviour, including
Functor, Traversable and Uniplate.

The lack type information has other consequences. For example,
we can write the definition:

fromFirst (First) = const First{} $ tuple0
fromSecond (Second x1 x2) = const Second{} $ tuple2 x1 x2

fromThird (Third x1) = const Third{} $ tuple1 x1

This function returns the elements contained within a constructor,
generalising operations such fromJust, and has seen extensive use
in the Yhc compiler (The Yhc Team 2007). When compiled with
GHC this code generates a warning that no top-level type signa-
tures have been given. These type signatures can be inferred, but the
Haddock documentation tool (Marlow 2002) won’t include func-
tions lacking type signatures. Without type information in Input,
we can’t generate appropriate type signatures.

We see no easy way to include type information in our deriva-
tion scheme – types have too much variety, and different type
classes make use of different type information. It may be possi-
ble to identify some restricted type information that could be used
for a subset of type-based instances, but we have not done so.

6.2 Practical Experiences
This section describes our experiences of specifying instances in a
form suitable for derivation. Ideally, we would write all instances
in a natural way, but sometimes we need to make concessions to
our derivation algorithm. Using the techniques given here, it seems
possible to write most instances which are based on information
included in the Input type.

6.2.1 Brackets Matter
The original DERIVE program used Template Haskell, which in-
clude brackets in the abstract syntax tree. For example, the ex-
pressions (First) and First are considered equal. However, using
haskell-src-exts, brackets are explicit and care must be taken to en-
sure every constructor has the same level of bracketing. Examples
of otherwise unnecessary brackets can be seen in §6.1.4, where the
constructor First is bracketed. Currently some redundant brackets
are removed by the transformations described in §5.2.

6.2.2 Variable Naming
When naming variables it is important that a sequence of variables
follow a pattern. For example, in §6.1.4 we use Second x1 x2,
rather than Second x y. By naming variables with consecutive
numbers we are able to derive the fields correctly.

6.2.3 Explicit Fold Base-Case
When performing a fold, it is important to explicitly include the
base-case. In the introductory example of NFData the Second

alternative is specified as rnf x1 `seq̀ rnf x2 `seq̀ (), however
we can show that:

∀ x • rnf x `seq̀ () ≡ rnf x

Therefore we could write the Second alternative more com-
pactly as rnf x1 `seq̀ rnf x2. However, doing so would mean there
was not one consistent pattern suitable for all constructors, and the
derivation would fail. In general, when considering folds, the base-
case should always be written explicitly.

6.2.4 Empty Record Construction
One useful feature of Haskell records is the empty record construc-
tion. The expression Second{} creates the value Second ⊥ ⊥.
This expression is useful for generating constructors to pass as the
second argument to const5, for some generic programming opera-
tions, and for values that are lazily evaluated. The pattern Second{}
matches all Second constructors, regardless of their fields.

6.2.5 Constructor Count
Some instances aren’t inductive – for example Binary instances
require a tag indicating which constructor has been stored, but only
if there is more than one constructor. This pattern can be written as:

instance Binary α ⇒ Binary (Sample α) where
put x = case x of

First → do putTag 0
Second x1 x2 → do putTag 1; put x1; put x2

Third x1 → do putTag 2; put x1

where
useTag = length [First{}, Second{}, Third{}] > 1
putTag = when useTag ◦ putWord8

get = do
i ← getTag
case i of

0 → do return (First)
1 → do x1 ← get; x2 ← get; return (Second x1 x2)
2 → do x1 ← get; return (Third x1)
→ error "Corrupted binary data for Sample"

where
useTag = length [First{}, Second{}, Third{}] > 1
getTag = if useTag then getWord8 else return 0

The value length [First{}, Second{}, Third{}] is used to com-
pute the number of constructors in the data type, which can be
tested to get the correct behaviour. This pattern is used in other
classes, for example Enum and Arbitrary. Using the simplifications
from §5.2 we can remove the test and produce code specialised to
the number of constructors.

The pattern for the number of constructors is useful, but seems a
little verbose. In the first version of DERIVE the constructor count
was guessed from the number 3. Unfortunately, the inclusion of
this guess breaks the restrictions we have imposed for predictabil-
ity. Another way of simplifying this pattern would be to introduce
a meta function ctorCount, which expanded to the number of con-
structors. This solution would mean inputs were not real example
instances, and would require users to learn part of the DSL – some-
thing we have tried to avoid. In the end, we simply accept that the
constructor count is slightly verbose.

6.3 Timing Properties
We have implemented the methods described in this paper, and
have used them to guess all 15 examples referred to in §6.1, along

5 "Second" would also work, but the use of a string feels too unpleasant.

with 2 additional test cases. For each example we perform the
following steps:

1. We derive the DSL from an example.

2. We apply the DSL (without output optimisation) to the Sample
data type and check it matches the input example.

3. We apply the DSL to three other data types, namely lists, the
eight element tuple and the expression type from the Yhc Core
library (Golubovsky et al. 2007).

To perform all steps for 17 examples takes 0.3 seconds when
compiled with GHC -O0 on a laptop with a 2GHz CPU and 1Gb
of RAM. We consider these times to be more than adequate, so
have not carried out further experiments or investigated additional
optimisations.

7. Related Work
An earlier version of the DERIVE tool was presented in a previ-
ous paper (Mitchell 2007). The previous work described only the
derivation algorithm. There was no intermediate DSL, and no pre-
dictability. Given a single example the tool could produce multiple
different answers, and would always use the first generated – not
always corresponding to the users intention. This paper presents a
much more general scheme, along with many improvements to the
previous work. Some of the areas of future work in the previous
paper have been tackled, such as dynamic instances (see §5.3.2).
Crucial improvements have been made to the derivation algorithm,
particularly when dealing with lists.

We are unaware of any work (other than our own) that attempts
to automatically derive Haskell type classes. Therefore we split the
remaining related work in to two sections – that which explicitly
defines instance relationships, and that which tries to derive rela-
tionships.

7.1 Specifying Type Classes
From an end-user perspective, the DrIFT tool (Winstanley 1997) is
similar to DERIVE – both take data types and produce associated
instances. To add a type-class to DrIFT the programmer manually
writes a translation from input types to Haskell source code, using
pretty-printing combinators. There is no automatic derivation of
instance generators, and no underlying DSL. As a result, it is
substantially easier to add generators which can be derived from
one example to DERIVE.

Another mechanism for specifying type classes is to use generic
type classes (Hinze and Peyton Jones 2000), a language extension
supported by GHC. A programmer can write default instances for
type classes in terms of the structure of a type, using unit, products
and sums. There are many restrictions on such classes, including
restrictions on the type of instance methods and the structure of
the input type. Using the abstraction of products and sums, it is
impossible to represent many instances such as those dealing with
records or containing type specific behaviour.

7.2 Deriving Relationships
The purpose of our work is to find a pattern, which is generalised
to other situations. Genetic algorithms (Goldberg 1989) are often
used to automatically find patterns in a data set. Genetic algorithms
work by evolving a hypothesis (a gene sequence) which is tested
against a sample problem. While genetic algorithms are good for
search, they usually use a heuristic to measure closeness – so lack
the exactness of our approach.

There is much research on learning relationships from a col-
lection of input/output pairs, often using only positive examples
(Kitzelmann 2007). Some work tackles this problem using exhaus-

tive search (Katayama 2008), a technique that could possibly re-
place our derive function. Instead of using specific examples, some
work generalises a set of non-recursive equations into a recursive
form (Kitzelmann and Schmid 2006; Kitzelmann 2008). All these
pieces of work require a set of input/output examples, in contrast to
our method that requires only one output for a specific input.

The closest work we are aware of is that of the theorem proving
community. Induction is a very common tactic for writing proofs,
and well supported in systems such as HOL Light (Harrison 1996).
Typically the user must suggest the use of induction, which the
system checks for validity. Automatic inference of an induction ar-
gument has been tried (Mintchev 1994), but is rarely successful.
However, these systems all work from one positive example, at-
tempting to determine a reasonably restricted pattern.

8. Conclusions and Future Work
We have presented a scheme for deriving a DSL from one example,
which we have used to automatically derive instance generators for
Haskell type classes. Our technique has been implemented in the
DERIVE tool, where 60% of instance generators are specified by
example. The ease of creating new instances has enabled several
users to contribute instance generators. The DERIVE tool can be
downloaded from Hackage6, and we encourage interested users to
try it out.

One of the key strengths of our derivation scheme is that con-
cerns of correctness and predictability are separated from the main
derivation function. Correctness is easy to test for, so incorrect
derivations can simply be discarded. Predictability is a property
of the DSL and sample input, and can be determined in isolation
from the derivation function. The derivation function merely needs
to take a best guess at what derivation might work, allowing greater
freedom to experiment.

We see several lines of future work:

• By deriving an explicit DSL, we can reuse the DSL for other
purposes. We have already shown the creation of dynamic in-
stances in §5.3.2, but there are other possible uses. A DSL could
be used to prove properties, for example that all Eq instances
are reflexive, or that put/get in Binary are inverses. Another
use might be to generate human readable documentation of an
instance. We suspect there are many other uses.

• The Sample data type (Figure 1) allows many instances to be
inferred – but more would be desirable. We have discussed
possible extensions in §6.1, but none seems to offer compelling
benefits. An alternative approach would be to introduce new
sample data types with features specifically for certain types of
definition. Care would have to be taken that these definitions
still preserved predictability, and did not substantially increase
the complexity of writing examples.

• While our scheme is implemented in a typed language, most
of the actual DSL operations work upon a universal data type
with runtime type checking – essentially a dynamically typed
language. In order to preserve types throughout we could make
use of GADTs (Peyton Jones et al. 2006).

• We have implemented our scheme specifically for instance gen-
erators in Haskell, but the same scheme could be applied to
other computer languages and other situations. One possible
target would be F#, where there are interfaces instead of type
classes. Another target could be an object-orientated language,
where design patterns (Gamma et al. 1995) are popular.

6 http://hackage.haskell.org/package/derive

Computers are ideally suited to applying a relationship using
new parameters, but specifying these relationships can be complex
and error prone. By specifying a single example, instead of the
relationship, a user can focus on what they care about, rather than
the mechanism by which it is implemented.

Acknowledgements
Thanks to Stefan O’Rear for help writing the first version of the
DERIVE tool. Thanks to Niklas Broberg for the excellent haskell-
src-exts library. Thanks to Hongseok Yang for fruitful discussions
on the original instance generation work. Thanks to Mike Dodds
for constructive criticism on earlier drafts.

A. Arities DSL
This section presents the full Arities DSL, a simplified version of
which is shown in §5.1.

List [Instance [] "Arities" (List [App "InsDecl" (
List [App "FunBind" (List [List [

App "Match" (List
[App "Ident" (List [String "arities"])
, List [App "PWildCard" (List [])]
, App "Nothing" (List [])
, App "UnGuardedRhs" (List [App "List" (List [

MapCtor (Application (List
[App "Var" (List [App "UnQual" (List [

App "Ident" (List [String "const"])])])
, App "Lit" (List [App "Int" (List [CtorArity])])
, App "RecConstr" (List [App "UnQual" (List [

App "Ident" (List [CtorName])]), List []])]
))

])])
, App "BDecls" (List [List []])]

)
]])]

)])]

References
Niklas Broberg. haskell-src-exts. http://www.cs.chalmers.

se/~d00nibro/haskell-src-exts/, 2009.

Koen Claessen and John Hughes. QuickCheck: A lightweight tool
for random testing of Haskell programs. In Proc. ICFP ’00,
pages 268–279. ACM Press, 2000.

Matthew Fluet and Riccardo Pucella. Phantom types and subtyp-
ing. In Proc. TCS ’02, pages 448–460, Deventer, The Nether-
lands, 2002.

Yoshihiko Futamura. Partial evaluation of computation process –
an approach to a compiler-compiler. Higher-Order and Symbolic
Computation, 12(4):381–391, 1999.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design patterns: elements of reusable object-oriented software.
Addison-Wesley Professional, 1995.

David E. Goldberg. Genetic Algorithms in Search, Optimization,
and Machine Learning. Addison-Wesley Professional, January
1989.

Dimitry Golubovsky, Neil Mitchell, and Matthew Naylor.
Yhc.Core – from Haskell to Core. The Monad.Reader, 1(7):
45–61, April 2007.

John Harrison. HOL light: A tutorial introduction. In Mandayam
Srivas and Albert Camilleri, editors, Proc. Formal Methods in

Computer-Aided Design, FMCAD’96, volume 1166 of LNCS,
pages 265–269. Spinger-Verlag, 1996.

Ralf Hinze and Simon Peyton Jones. Derivable type classes. In
Graham Hutton, editor, Proc Haskell Workshop 2000. Elsevier
Science, September 2000.

John Hughes. The design of a pretty-printing library. In J. Jeur-
ing and E. Meijer, editors, Advanced Functional Programming,
pages 53–96. Springer Verlag, LNCS 925, 1995.

Susumu Katayama. Efficient exhaustive generation of functional
programs using Monte-Carlo search with iterative deepening.
In PRICAI 2008: Trends in Artificial Intelligence, volume 5351,
pages 199–210. LNCS, 2008.

Emanuel Kitzelmann. Data-driven induction of recursive func-
tions from input/output-examples. In Proceedings of the Work-
shop on Approaches and Applications of Inductive Progamming
(AAIP’07), pages 15–26, 2007.

Emanuel Kitzelmann. Data-driven induction of functional pro-
grams. In Proc. ECAI 2008. IOS Press, July 2008.

Emanuel Kitzelmann and Ute Schmid. Inductive synthesis of
functional programs – An explanation based generalization ap-
proach. Journal of Machine Learning Research, 7(Feb):429–
454, 2006.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. In Proc. TLDI
’03, pages 26–37. ACM Press, March 2003.

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. In Proc. ICFP ’04, pages
244–255. ACM Press, 2004.

Simon Marlow. Haddock, a Haskell documentation tool. In Proc.
Haskell Workshop 2002, Pittsburgh Pennsylvania, USA, October
2002. ACM Press.

Sava Mintchev. Mechanized reasoning about functional programs.
In K. Hammond, D. N. Turner, and P. M. Sansom, editors, Func-
tional Programming, pages 151–166. Springer, Berlin, Heidel-
berg, 1994.

Neil Mitchell. Deriving generic functions by example. In Jan To-
bias Mühlberg and Juan Ignacio Perna, editors, Proc. York Doc-
toral Symposium 2007, pages 55–62. Tech. Report YCS-2007-
421, University of York, October 2007.

Neil Mitchell and Stefan O’Rear. Derive - project home
page. http://community.haskell.org/~ndm/derive/,
March 2007.

Neil Mitchell and Colin Runciman. Uniform boilerplate and list
processing. In Proc. Haskell ’07, pages 49–60. ACM, 2007.

Matt Morrow. haskell-src-meta. http://hackage.haskell.
org/package/haskell-src-meta, 2009.

Simon Peyton Jones. Haskell 98 Language and Libraries: The
Revised Report. Cambridge University Press, 2003.

Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and
Geoffrey Washburn. Simple unification-based type inference for
GADTs. In Proc. ICFP ’06, pages 50–61. ACM Press, 2006.

Tim Sheard and Simon Peyton Jones. Template meta-programming
for Haskell. In Proc. Haskell Workshop ’02, pages 1–16. ACM
Press, 2002.

The GHC Team. The GHC compiler, version 6.10.3. http:
//www.haskell.org/ghc/, May 2009.

The Yhc Team. The York Haskell Compiler – user manual. http:
//www.haskell.org/haskellwiki/Yhc, February 2007.

Philip Trinder, Kevin Hammond, Hans-Wolfgang Loidl, and Simon
Peyton Jones. Algorithm + strategy = parallelism. JFP, 8(1):23–
60, January 1998.

Philip Wadler. How to replace failure by a list of successes. In
Proc. FPCA ’85, pages 113–128. Springer-Verlag New York,
Inc., 1985.

Philip Wadler and Stephen Blott. How to make ad-hoc polymor-
phism less ad hoc. In Proc. POPL ’89, pages 60–76. ACM Press,
1989.

Noel Winstanley. Reflections on instance derivation. In 1997 Glas-
gow Workshop on Functional Programming. BCS Workshops in
Computer Science, September 1997.

