
Chapter 2

A Static Checker for Safe
Pattern Matching in Haskell
Neil Mitchell and Colin Runciman2.1

Abstract: A Haskell program may fail at runtime with a pattern-match error if
the program has any incomplete (non-exhaustive) patterns in definitions or case
alternatives. This paper describes a static checker that allows non-exhaustive pat-
terns to exist, yet ensures that a pattern-match error does not occur. It describes a
constraint language that can be used to reason about pattern matches, along with
mechanisms to propagate these constraints between program components.

2.1 INTRODUCTION

Often it is useful to define pattern matches which are incomplete, for example
head fails on the empty list. Unfortunately programs with incomplete pattern
matches may fail at runtime.

Consider the following example:

risers :: Ord a => [a] -> [[a]]
risers [] = []
risers [x] = [[x]]
risers (x:y:etc) = if x <= y then (x:s):ss else [x]:(s:ss)

where (s:ss) = risers (y:etc)

A sample execution of this function would be:

> risers [1,2,3,1,2]
[[1,2,3],[1,2]]

In the last line of the definition,(s:ss) is matched against the output of
risers . If risers (y:etc) returns an empty list this would cause a pattern

2.1University of York, UK. http://www.cs.york.ac.uk/∼ndm and http://www.cs.york.ac.uk/∼colin

15

match error. It takes a few moments to check this program manually – and a few
more to be sure one has not made a mistake!

GHC [The05] 6.4 has a warning flag to detect incomplete patterns, which is
named-fwarn-incomplete-patterns . Adding this flag at compile time
reports:2.2

Warning: Pattern match(es) are non-exhaustive

But the GHC checks are only local. If the functionhead is defined, then it
raises a warning. No effort is made to check thecallers of head – this is an
obligation left to the programmer.

Turning therisers function over to the checker developed in this paper, the
output is:

> (risers (y:etc)) {: }
> True

The checker first decides that for the code to be safe the recursive call to
risers must always yield a non-empty list. It then notices that if the argument
in a risers application is non-empty, then so will the result be. This satisfies it,
and it returns True, guaranteeing that no pattern-match errors will occur.

2.1.1 Roadmap

This paper starts by introducing a reduced language similar to Haskell in§2.2.
Next a constraint language is introduced in§2.3 and algorithms are given to ma-
nipulate these constraints in§2.4. A worked example is given in§2.5, followed
by a range of small examples and a case study in§2.6. This paper is compared
to related work in§2.7. Finally conclusions are given in§2.8, along with some
remaining tasks – this paper reports on work in progress.

2.2 REDUCED HASKELL

The full Haskell language is a bit unwieldy for analysis. In particular the syntactic
sugar complicates analysis by introducing more types of expression to consider.
The checker works instead on a simplified language, a core to which other Haskell
programs can be reduced. This core language is a functional language, making
use of case expressions, function applications and algebraic data types.

As shown in example 1, only one defining equation per function is permitted,
pattern-matching occurs only in case expressions and every element within a con-
structor must be uniquely named by a selector (e.g.hd andtl). A convertor from
a reasonable subset of Haskell to this reduced language has been written.

2.2The additional flag-fwarn-simple-patterns is needed, but this is due to GHC bug
number 1075259

16

Example 2.1

data [] a = (:) {hd :: a, tl :: [] a } | []

head x = case x of (a:_) -> a

map f xs = case xs of
[] -> []
(a:as) -> f x : map f as

reverse xs = rev xs []

reverse2 x a = case x of
[] -> a
(y:ys) -> reverse2 ys (y:a)

2.2.1 Higher Order Functions

The current checker is not higher order, and does not allow partial application.
The checker tries to eliminate higher-order functions by specialization. A mu-

tually recursive group of functions can be specialized in theirnth argument if in
all recursive calls this argument is invariant.

Examples of common functions whose applications can be specialized in this
way includemap, filter , foldr andfoldl .

When a function can be specialized, the expression passed as thenth argu-
ment has all its free variables passed as extra arguments, and is expanded in the
specialized version. All recursive calls within the new function are then renamed.

Example 2.2

map f xs = case xs of
[] -> []
(a:as) -> f a : map f as

adds x n = map (add n) x

is transformed into:

map_adds n xs = case xs of
[] -> []
(a:as) -> add n a : map_adds n as

adds x n = map_adds n x

Although this firstification approach is not complete by any means, it appears
to be sufficient for a large range of examples. Alternative methods are available
for full firstification, such as that detailed by Hughes [Hug96], or the defunction-
alisation approach by Reynolds [Rey72].

17

2.2.2 Internal Representation

While the concrete syntax allows the introduction of new variable names, the
internal representation does not. All variables are referred to using aselector path
from an argument to the function.

For example, the internal representation ofmap is:

map f xs = case xs of
[] -> []
(_:_) -> f (xs ·hd) : map f (xs ·tl)

(Note that the infix· operator here is used to compose paths; it isnot the
Haskell function composition operator.)

2.3 A CONSTRAINT LANGUAGE

In order to implement a checker that can ensure unfailing patterns, it is useful to
have some way of expressing properties of data values. A constraint is written as
〈e, r,c〉 , wheree is an expression,r is a regular expression over selectors andc is
a set of constructors. Such a constraint asserts that any well-defined application
to eof a path of selectors described byr must reach a constructor in the setc.

These constraints are used as atoms in a predicate language with conjunction
and disjunction, so constraints can be about several expressions and relations be-
tween them. The checker does not require a negation operator. We also use the
term constraint to refer to logical formulae with constraints as atoms.

Example 2.3

Consider the functionminimum , defined as:

minimum xs = case xs of
[x] -> x
(a:b:xs) -> minimum (min a b : xs)

min a b = case a < b of
True -> a
False -> b

Now consider the expressionminimum e. The constraint that must hold for
this expression to be safe is〈e,λ,{: }〉. This says that the expressionemust reduce
to an application of: , i.e. a non-empty list. In this example the path wasλ – the
empty path.

Example 2.4

Consider the expressionmap minimum e. In this case the constraint gener-
ated is〈e, tl ∗·hd ,{: }〉. If we apply any number (possibly zero) oftl s to e,

18

then applyhd , we reach a: construction. Values satisfying this constraint in-
clude [] and [[1],[2],[3]] , but not [[1],[]] . The value[] satisfies
this constraint because it is impossible to apply eithertl or hd , and therefore the
constraint does not assert anything about the possible constructors.

Constraints divide up into three parts – thesubject, thepathand thecondition.

The subject in the above two examples was juste, representing any expression –
including a call, a construction or even acase .

The path is a regular expression over selectors.

A regular expression is defined as:

s+ t union of regular expressionss andt
s· t concatenation of regular expressionss thent
s∗ any number (possibly zero) occurrences ofs
x a selector, such ashd or tl
λ the language is the set containing the empty string
φ the language is the empty set

The condition is a set of constructors which, due to static type checking, must all
be of the same result type.

The meaning of a constraint is defined by:

〈e, r,c〉 ⇔ (∀l ∈ L(r)•defined(e, l)⇒ constructor(e· l) ∈ c)

HereL(r) is the language represented by the regular expressionr; definedreturns
true if a path selection is well-defined; andconstructorgives the constructor used
to create the data. Of course, sinceL(r) is potentially infinite, this cannot be
checked by enumeration.

If no path selection is well-defined then the constraint is vacuously true.

2.3.1 Simplifying the Constraints

From the definition of the constraints it is possible to construct a number of iden-
tities which can be used for simplification.

Path does not exist:in the constraint〈[] ,hd ,{: }〉 the expression[] does not
have ahd path, so this constraint simplifies to true.

Detecting failure: the constraint〈[] ,λ,{: }〉 simplifies to false because the[]
value is not the constructor: .

Empty path: in the constraint〈e,φ,c〉, the regular expression isφ, the empty lan-
guage, so the constraint is always true.

19

Exhaustive conditions:in the constraint〈e,λ,{:,[] }〉 the condition lists all the
possible constructors, ife reaches weak head normal form then because of
static typingemust be one of these constructors, therefore this constraint sim-
plifies to true.

Algebraic conditions: finally a couple of algebraic equivalences:

〈e, r1,c〉∧ 〈e, r2,c〉 = 〈e,(r1 + r2),c〉
〈e, r,c1〉∧ 〈e, r,c2〉 = 〈e, r,c1∩c2〉

2.4 DETERMINING THE CONSTRAINTS

This section concerns the derivation of the constraints, and the operations involved
in this task.

2.4.1 The Initial Constraints

In general, acase expression, where−→v are the arguments to a constructor:

case e of C 1
−→v -> val 1; ...; C n

−→v -> val n

produces the initial constraint〈e,λ,{C1,...,C n}〉. If the case alternatives are
exhaustive, then this can be simplified to true. Allcase expressions in the pro-
gram are found, their initial constraints are found, and these are joined together
with conjunction.

2.4.2 Transforming the constraints

For each constraint in turn, if the subject isxf (i.e. thex argument tof), the
checker searches for every application off , and gets the expression for the ar-
gumentx . On this expression, it sets the existing constraint. This constraint is
then transformed using a backward analysis (see§2.4.3), until a constraint on ar-
guments is found.

Example 2.5

Consider the constraint〈xs minimum,λ,{: }〉 – that isminimum ’s argumentxs
must be a non-empty list. If the program contains the expression:

f x = minimum (g x)

then the derived constraint is〈(g x f) ,λ,{: }〉.

2.4.3 Backward Analysis

Backward analysis takes a constraint in which the subject is a compound expres-
sion, and derives a combination of constraints over arguments only. This process

20

ϕ〈e·s, r,c〉 → ϕ〈e,s· r,c〉 (sel)

V#−→e
i=1 ϕ〈ei ,

∂r
∂S(C,i) ,c〉 → P

ϕ〈C −→e , r,c〉 → (λ ∈ L(r)⇒C∈ c)∧P
(con)

ϕ〈 f −→e , r,c〉 → ϕ〈D(f ,−→e), r,c〉 (app)

V#−→e
i=1 (ϕ〈e0,λ,C (Ci)〉∨ϕ〈ei , r,c〉)→ P

ϕ〈case e0 of {C1
−→v -> e1; · · · ; Cn

−→v -> en}, r,c〉 → P
(cas)

FIGURE 2.1. Specification of backward analysis,ϕ

is denoted by a functionϕ, which takes a constraint and returns a predicate over
constraints. This function is detailed in Figure 2.1.

In this figure,C denotes a constructor,c is a set of constructors,f is a function,
e is an expression,r is a regular expression over selectors ands is a selector.

The (sel) rulemoves the composition from the expression to the path.

The (con) rule deals with an application of a constructorC. If λ is in the path lan-
guage theC must be permitted by the condition. This depends on theempty
word property(ewp) [Con71], which can be calculated structurally on the reg-
ular expression.

For each of the arguments toC, a new constraint is obtained from the deriva-
tive of the regular expression with respect to that argument’s selector. This is
denoted by∂r/∂S(C, i), whereS(C, i) gives the selector for theith argument
of the constructorC. The differentiation method is based on that described by
Conway [Con71]. It can be used to test for membership in the following way:

λ ∈ L(r) = ewp(r)
s· r ′ ∈ L(r) = r ′ ∈ L(∂r/∂s)

Two particular cases of note are∂λ/∂a = φ and∂φ/∂a = φ.

The (app) rule uses the notationD(f ,−→e) to express the result of substituting
each of the arguments in−→e into the body of the functionf . The naive appli-
cation of this rule to any function with a recursive call will loop forever. To
combat this, if a function is already in the process of being evaluated with the
same constraint, its result is given as true, and the recursive arguments are put
into a special pile to be examined later on, see§2.4.4 for details.

The (cas) rulegenerates a conjunct for each alternative. The functionC (C) re-
turns the set of all other constructors with the same result type asC, i.e.

21

C ([]) = {:}. The generated condition says either the subject of the case
analysis has a different constructor (so this particular alternative is not exe-
cuted in this circumstance), or the right hand side of the alternative is safe
given the conditions for this expression.

2.4.4 Obtaining a Fixed Point

We have noted that if a function is in the process of being evaluated, and its
value is asked for again with the same constraints, then the call is deferred. After
backwards analysis has been performed on the result of a function, there will be
a constraint in terms of the arguments, along with a set of recursive calls. If these
recursive calls had been analyzed further, then the checking computation would
not have terminated.

Example 2.6

mapHead xs = case xs of
[] -> []
(x:xs) -> head x : mapHead xs

The functionmapHead is exactly equivalent tomap head. Running back-
ward analysis over this function, the constraint generated is〈xs mapHead,hd ,{: }〉,
and the only recursive call noted ismapHead (xs ·tl). The recursive call is
written asxs ←↩ xs ·tl , showing how the value ofxs changes. Observe that
the path in the constraint only reaches the first element in the list, while the desired
constraint would reach them all. In effectmapHead has been analyzed without
considering any recursive applications.

The fixed point for this function can be derived by repeatedly replacingxs
with xs ·tl in the subject of the constraint, and joining these constraints with
conjunction.

〈xs ,hd,{: }〉∧ 〈xs ·tl ,hd,{: }〉∧ 〈xs ·tl ·tl ,hd,{: }〉∧ . . . (1)

≡ 〈xs ,hd,{: }〉∧ 〈xs , tl ·hd,{: }〉∧ 〈xs , tl ·tl ·hd,{: }〉∧ . . . (2)

≡ 〈xs ,hd+tl ·hd+tl ·tl ·hd+ . . .,{: }〉 (3)

≡ 〈xs , (λ+tl+tl ·tl+ . . .) ·hd,{: }〉 (4)

≡ 〈xs , tl ∗·hd,{: }〉 (5)

The justification is as follows. First use the backwards analysis rule given in
Figure 2.1 to transform between (1) and (2) – selectors move from the subject to
the path. To obtain (3) the first algebraic condition given in§2.3.1 is used. The
factorisation of thehd element of the regular expression is applied. Finally this
can be rewritten using the regular expression∗operator as the result.

More generally, given any constraint of the form〈x , r,c〉 and a recursive call
of the formx ←↩ x. p, the fixed point is〈x, p∗ · r,c〉. A special case is wherep
is λ, in which casep∗·r = r.

22

Example 2.7

Consider the functionreverse written using an accumulator:

reverse x = reverse2 x []

reverse2 x a = case x of
[] -> a
(y:ys) -> reverse2 ys (y:a)

Argumentxs follows the patternx ←↩ x.tl , but we also have the recursive
call a ←↩ (x ·hd:a) . If the program being analyzed contained an instance of
map head (reverse x) , the part of the condition that applies toa before
the fixed pointing ofa is 〈a, tl ∗·hd ,{: }〉.

In this case a second rule for obtaining a fixed point can be used. For recursive
calls of the forma ←↩ C x1 · · · xn a, wheres is the selector corresponding
to the position ofa, the rule is:

^

r ′∈r#

((
λ ∈ L(r ′)⇒C∈ c

)
∧〈a, r ′,c〉∧

n̂

i=1

〈xi ,
∂r ′

∂S(C, i)
,c〉

)

Where:

r# = {r0, r1, . . . , r∞} r0 = r r (n+1) =
∂rn

∂s

It can be shown thatr# is always a finite set [Law04]. This expression is
derived from the (con) rule§2.4.3, applied until it reaches a fixed point.

In the reverse example,r# is {tl ∗·hd}, since∂tl ∗·hd/∂tl = tl ∗·hd .
Also λ /∈ L(tl ∗·hd), so the result is:

〈a, tl ∗·hd ,{: }〉∧〈x ·hd ,
∂tl ∗·hd

∂hd
,{: }〉

≡ 〈a, tl ∗·hd ,{: }〉∧〈x ·hd ,λ,{: }〉
≡ 〈a, tl ∗·hd ,{: }〉∧〈x ,hd ,{: }〉

Next applying the fixed pointing due tox , gives a final condition, as expected:
〈a, tl ∗·hd ,{: }〉 ∧ 〈x , tl ∗·hd ,{: }〉

While the two rules given do cover a wide range of examples, they are not
complete. Additional rules exist for other forms of recursion but not all recursive
functions can be handled using the current scheme.

Example 2.8

interleave x y = case x of
[] -> y
(a:b) -> a : interleave y b

23

Here the recursive call isy ←↩ x ·tl , which does not have a rule defined
for it. In such cases the checker conservatively outputsFalse , and also gives a
warning message to the user. The checker always terminates.

The fixed point rules classify exactly which forms of recursion can be accepted
by the checker. Defining more fixed point rules which can capture an increasingly
large number of patterns is a matter for future work.

2.5 A WORKED EXAMPLE

Recall therisers example in§2.1. The first step of the checker is to transform
this into reduced Haskell.

risers xs =
case xs of

[] -> []
[x] -> [[x]]
(x:y:etc) -> risers2 (x <= y) x (risers (y:etc))

risers2 b x y = case y of
(s:ss) -> case b of

True -> (x:s) : ss
False -> [x] : (s:ss)

The auxiliaryrisers2 is necessary because reduced Haskell has nowhere
clause. The checker proceeds as follows:

Step 1, Find all incomplete case statements.The checker finds one, in the
body of risers2 , the argumenty must be a non-empty list. The constraint
is 〈yrisers2,λ,{: }〉.

Step 2, Propagate. The auxiliaryrisers2 is applied byrisers with risers
(y:etc) as the arguments . This gives〈(risers (y:etc)) ,λ,{: }〉. When
rewritten in terms of arguments and paths of selectors, this gives the constraint
〈(risers (xs risers·tl ·hd : xs risers·tl ·tl)) ,λ,{: }〉.

Step 3, Backward analysis.The constraint is transformed using the backward
analysis rules. The first rule invoked is (app), which says that the body ofrisers
must evaluate to a non-empty list, in effect an inline version of the constraint.
Backward analysis is then performed over the case statement, the constructors,
and finallyrisers2 . The conclusion is that providedxs risers is a : , the result
will be. The constraint is〈(xs risers·tl ·hd : xs risers·tl ·tl) ,λ,{: }〉, which
is true.

In this example, there is no need to perform any fixed pointing.

24

2.6 SOME SMALL EXAMPLES AND A CASE STUDY

In the following examples, each line represents one propagation step in the checker.
The final constraint is given on the last line.

head x = case x of
(y:ys) -> y

main x = head x
> 〈xhead,λ,{: }〉
> 〈xmain,λ,{: }〉

This example requires only initial constraint generation, and a simple propagation.

Example 2.9

main x = map head x
> 〈xhead,λ,{: }〉
> 〈xmap head, tl ∗·hd ,{: }〉
> 〈xmain, tl ∗·hd ,{: }〉

This example shows specialization generating a new functionmap_head, fixed
pointing being applied tomap, and the constraints being propagated through the
system.

Example 2.10

main x = map head (reverse x)
> 〈xhead,λ,{: }〉
> 〈xmap head, tl ∗·hd ,{: }〉
> 〈xmain, tl ∗,{: }〉 ∨ 〈xmain, tl ∗·hd ,{: }〉

This result may at first seem surprising. The first disjunct of the constraint says
that applyingtl any number of times toxmain the result must always be a: , in
other wordsx must be infinite. This guarantees case safety becausereverse is
tail strict, so if its argument is an infinite list, no result will ever be produced, and
a case error will not occur. The second disjunct says, less surprisingly, that every
item inx must be a non-empty list.

Example 2.11

main xs ys = case null xs || null ys of
True -> 0
False -> head xs + head ys

> 〈xhead,λ,{: }〉
> 〈(null xs main || null ys main) ,λ,{True }〉 ∨

(〈xs main,λ,{: }〉 ∧ 〈ys main,λ,{: }〉)
> 〈xs main,λ,{[] }〉 ∨ 〈ys main,λ,{[] }〉 ∨ (〈xs main,λ,{: }〉 ∧ 〈ys main,λ,{: }〉)
> True

25

This example shows the use of a more complex condition to guard a potentially
unsafe application ofhead . The backward analysis applied tonull and|| gives
precise requirements, which when expanded results in a tautology, showing that
no pattern match error can occur.

Example 2.12

main x = tails x
tails x = foldr tails2 [[]] x
tails2 x y = (x:head y) : y
> 〈xhead,λ,{: }〉
> 〈ytails2,λ,{: }〉
> 〈n1foldr tails2,λ,{: }〉 ∨ 〈n2foldr tails2, tl ∗·tl ,{: }〉
> True

This final example uses a fold to calculate thetails function. As the auxiliary
tails2 makes use ofhead the program is not obviously free from pattern-
match errors. The first two lines of the output are simply moving the constraint
around. The third line is the interesting one. In this line the checker gives two
alternative conditions for the case safety offoldr tails2 – either its first
argument is a: , or its second argument is empty or infinite. The way the require-
ment for empty or infinite length is encoded is by the pathtl ∗·tl . If the list is
[] , then there are no tails to match the path. If however, there is one tail, then that
tail, and all successive tails must be: . So eitherfoldr does not call its function
argument because it immediately takes the[] case, orfoldr recurses infinitely,
and therefore the function is never called. Either way, becausefoldr ’s second
argument is a: , and becausetails2 always returns a: , the first part of the
condition can be satisfied.

2.6.1 The Clausify Program

Our goal is to check standard Haskell programs, and to provide useful feedback
to the user. To test the checker against these objectives we have used several
Haskell programs, all written some time ago for other purposes. The analysis of
one program is discussed below.

The Clausify program has been around for a very long time, since at least
1990. It has made its way into thenofib benchmark suite [Par92], and was the
focus of several papers on heap profiling [RW93]. It parses logical propositions
and puts them in clausal form. We ignore the parser and jump straight to the
transformation of propositions. The data structure for a formula is:

data F = Sym {char :: Char } | Not {n :: F }
| Dis {d1, d2 :: F } | Con {c1, c2 :: F }
| Imp {i1, i2 :: F } | Eqv {e1, e2 :: F }

and the main pipeline is:

unicl . split . disin . negin . elim

26

Each of these stages takes a proposition and returns an equivalent version –
for example theelim stage replaces implications with disjunctions and negation.
Each stage eliminates certain forms of proposition, so that future stages do not
have to consider them. Despite most of the stages being designed to deal with a
restricted class of propositions, the only function which contains a non-exhaustive
pattern match is in the definition ofclause (a helper function forunicl).

clause p = clause’ p ([] , [])
where
clause’ (Dis p q) x = clause’ p (clause’ q x)
clause’ (Sym s) (c,a) = (insert s c , a)
clause’ (Not (Sym s)) (c,a) = (c , insert s a)

After encountering the non-exhaustive pattern match, the checker generates
the following constraints:

> 〈pclause′ , (d1+d2) ∗,{Dis,Sym,Not }〉 ∧ 〈pclause′ , (d1+d2) ∗·n,{Sym}〉
> 〈pclause′ , (d1+d2) ∗,{Dis,Sym,Not }〉 ∧ 〈pclause, (d1+d2) ∗·n,{Sym}〉
> 〈punicl′ , (d1+d2) ∗,{Dis,Sym,Not }〉 ∧ 〈punicl′ , (d1+d2) ∗·n,{Sym}〉
> 〈xfoldr unicl, tl ∗·hd ·(d1+d2) ∗,{Dis,Sym,Not }〉 ∧
〈xfoldr unicl, tl ∗·hd ·(d1+d2) ∗·n,{Sym}〉

> 〈xunicl, tl ∗·hd ·(d1+d2) ∗,{Dis,Sym,Not }〉 ∧
〈xunicl, tl ∗·hd ·(d1+d2) ∗·n,{Sym}〉

These constraints give accurate and precise requirements for a case error not
to occur at each stage. However, when the condition is propagated back over the
split function, the result becomes less pleasing. None of our fixed pointing
schemes handle the original recursive definition ofsplit :

split p = split’ p []
where
split’ (Con p q) a = split’ p (split’ q a)
split’ p a = p : a

can be transformed manually by the removal of the accumulator:

split (Con p q) = split p ++ split q
split p = [p]

This second version is accepted by the checker, which generates the constraint:

> 〈psplit, (c1+c2) ∗,{Con,Dis,Sym,Not }〉 ∧
〈psplit, (c1+c2) ∗·(d1+d2) ·(d1+d2) ∗,{Dis,Sym,Not }〉 ∧
〈psplit, (c1+c2) ∗·(d1+d2) ∗·n,{Sym}〉

This constraint can be read as follows: the outer structure of a propositional
argument tosplit is any number of nestedCon constructors; the next level
is any number of nestedDis constructors; at the innermost level there must be
either aSym, or aNot containing aSym. That is, propositions are inconjunctive
normal form.

27

The one surprising part of this constraint is the(d1+d2) ·(d1+d2) ∗ part
of the path in the 2nd conjunct. We might rather expect something similar to
(c1+c2) ∗·(d1+d2) ∗{Dis,Sym,Not }, but consider what this means. Take
as an example the value(Con (Sym ’x’) (Sym ’y’)) . This value meets
all 3 conjunctions generated by the tool, but does not meet this new constraint:
the path has the empty word property, so the root of the value can no longer be a
Con constructor.

The next function encountered isdisin which shifts disjunction inside con-
junction. The version in the nofib benchmark has the following equation in its
definition:

disin (Dis p q) = if conjunct dp || conjunct dq
then disin (Dis dp dq)
else (Dis dp dq)

where
dp = disin p
dq = disin q

Unfortunately, when expanded out this gives the call

disin (Dis (disin p) (disin q))

which does not have a fixed point under the present scheme. Refactoring is re-
quired to enable this stage to succeed. Fortunately, in [RW93] a new version of
disin is given, which is vastly more efficient than this one, and (as a happy side
effect) is also accepted by the checker.

At this point the story comes to an end. Although a constraint is calculated
for the newdisin , this constraint is approximately 15 printed pages long! Ini-
tial exploration suggests at least one reason for such a large constraint: there are
missed opportunities to simplify paths. We are confident that with further work
the Clausify example can be completed.

2.7 RELATED WORK

Viewed as aproof tool this work can be seen as following Turner’s goal to define a
Haskell-like language which is total [Tur04]. Turner disallows incomplete pattern
matches, saying this will “force you to pay attention to exactly those corner cases
which are likely to cause trouble”. Our checker may allow this restriction to be
lifted, yet still retain a total programming language.

Viewed as a basicpattern match checker, the work on compiling warnings
about incomplete and overlapping patterns is quite relevant [JHH+93, Mar05]. As
noted in the introduction, these checks are only local.

Viewed as amistake detectorthis tool has a similar purpose to the classic C
Lint tool [Joh78], or Dialyzer [LS04] – a static checker for Erlang. The aim is to
have a static checker that works on unmodified code, with no additional annota-
tions. However, a key difference is that in Dialyzer all warnings indicate a genuine
problem that needs to be fixed. Because Erlang is a dynamically typed language,

28

a large proportion of Dialyzer’s warnings relate to mistakes a type checker would
have detected.

Viewed as asoft type systemthe checker can be compared to the tree automata
work done on XML and XSL [Toz01], which can be seen as an algebraic data
type and a functional language. Another soft typing system with similarities is by
Aiken [AM91], on the functional language FL. This system tries to assign a type
to each function using a set of constructors, for examplehead is given justCons
and notNil .

2.8 CONCLUSIONS AND FURTHER WORK

A static checker for potential pattern-match errors in Haskell has been specified
and implemented. This checker is capable of determining preconditions under
which a program with non-exhaustive patterns executes without failing due to a
pattern-match error. A range of small examples has been investigated success-
fully. Where programs cannot be checked initially, refactoring can increase the
checker’s success rate. Work in progress includes:

• The checker currently relies on specialization to remove higher order func-
tions.

• The checker is fully polymorphic but it does not currently handle Haskell’s
type classes; we hope these can be transformed away without vast complica-
tion [Jon94].

• Another challenge is to translate from full Haskell into the reduced language.
This work has been started: we have a converter for a useful subset.

• The checker should offer fuller traces that can be manually verified. Currently
the predicate at each stage is given, without any record of how it was obtained,
or what effect fixed pointing had. Although a more detailed trace would not
help an end user, it would help strengthen the understanding of the algorithms.

• The central algorithms of the checker can be refined. In particular a better fixed
pointing scheme is being developed. A complete analysis of which programs
can be verified would be useful.

• A correctness proof is needed to prove that the checker is sound. This will
require a semantics for the reduced Haskell-like language.

With these improvements we hope to check larger Haskell programs, and to
give useful feedback to the programmer.

ACKNOWLEDGEMENT

The first author is a PhD student supported by a studentship from the Engineering
and Physical Sciences Research Council of the UK.

29

REFERENCES

[AM91] Alex Aiken and Brian Murphy. Static Type Inference in a Dynamically Typed
Language. InPOPL ’91: Proceedings of the 18th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 279–290. ACM
Press, 1991.

[Con71] John Horton Conway.Regular Algebra and Finite Machines. London Chap-
man and Hall, 1971.

[Hug96] John Hughes. Type Specialisation for the Lambda-calculus; or, A New Par-
adigm for Partial Evaluation based on Type Inference. In Olivier Danvy,
Robert Gl̈uck, and Peter Thiemann, editors,Partial Evaluation, pages 183–
215. Springer LNCS 1110, February 1996.

[JHH+93] Simon Peyton Jones, C V Hall, K Hammond, W Partain, and P Wadler.
The Glasgow Haskell Compiler: A Technical Overview. InProc. UK Joint
Framework for Information Technology (JFIT) Technical Conference, 1993.
http://www.haskell.org/ghc/ .

[Joh78] S. C. Johnson. Lint, a C program checker. Technical Report 65, Bell Labora-
tories, 1978.

[Jon94] Mark P. Jones. Dictionary-free Overloading by Partial Evaluation. InACM
SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program
Manipulation. ACM Press, June 1994.

[Law04] Mark V. Lawson.Finite Automata. CRC Press, first edition, 2004.

[LS04] Tobias Lindahl and Konstantinos Sagonas. Detecting software defects in tele-
com applications through lightweight static analysis: A war story. In Chin
Wei-Ngan, editor,Programming Languages and Systems: Proceedings of the
Second Asian Symposium (APLAS’04), volume 3302 ofLNCS, pages 91–106.
Springer, November 2004.

[Mar05] Luc Maranget. Warnings for Pattern Matching. Under consideration for pub-
lication inJournal Functional Programming, March 2005.

[Par92] Will Partain. Thenofib Benchmark Suite of Haskell Programs. In J Launch-
bury and PM Sansom, editors,Functional Programming, Glasgow 1992, pages
195–202. Springer-Verlag Workshops in Computing, 1992.

[Rey72] John C. Reynolds. Definitional interpreters for higher-order programming lan-
guages. InACM ’72: Proceedings of the ACM annual conference, pages 717–
740, New York, NY, USA, 1972. ACM Press.

[RW93] Colin Runciman and David Wakeling. Heap Profiling of Lazy Functional Pro-
grams.Journal of Functional Programming, 3(2):217–245, 1993.

[The05] The GHC Team. The Glorious Glasgow Haskell Compilation System
User’s Guide, Version 6.4.http://www.haskell/org/ghc/docs/
latest/html/users guide , March 2005.

[Toz01] Akihiko Tozawa. Towards Static Type Checking for XSLT. InDocEng ’01:
Proceedings of the 2001 ACM Symposium on Document engineering, pages
18–27, New York, NY, USA, 2001. ACM Press.

[Tur04] David Turner. Total Functional Programming.Journal of Universal Computer
Science, 10(7):751–768, July 2004.

30

